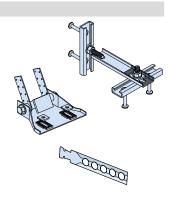


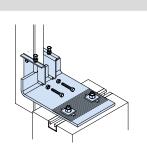
HALFEN CAST-IN CHANNELS Technical Product Information

YOUR BEST CONNECTIONS

HALFEN CAST-IN CHANNELS

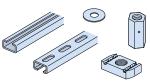

Content

Application examples	4	
Better safe than sorry - The right channel for every application	5	
I HALFEN HTA-CE Channels	6-27	
General	7 - 8	
Materials/Corrosion protection	9 - 10	
Installation/Assembly	11 – 12	
Identification/Geometry	13	
Product range	14 - 16	TE
HALFEN Bolts HS/HSR	17 – 21	HTA S
Available types	23 - 24	
HTA-CS (Curved channels)	24	
Calculation	25	
Software	26-27	
Dynamic loading	37	
P HALFEN HZA Channels	28 - 37	
Application examples	29	9
Product range	30	
HALFEN HZS Bolts	31	
Available types	32	
Calculation	33 - 36	
Dynamic loading	37	
HALFEN HGB Handrail fixings	38 - 51	
Application examples	39	
General	40	6
Materials/Corrosion protection	41	(TURINIL
Installation/Assembly	42	THE THE
Product range	43	(united as a second
Dimensioning / calculation	44 - 51	
Calculation example	50 - 51	
HALFEN HTU Channels – fixings for trapezoid metal sheeting	52 - 54	
Application examples	52	\sim
General/Product range	53	
Dimensioning	54	



HALFEN CAST-IN CHANNELS Content

5 Roof and walls	55 - 67
Application examples	56
HALFEN HSF Rafter shoe	57
HALFEN HNA Timber anchor	58
Masonry ML/BL connection systems	59 - 62
HALFEN Dowels	60
Firewall connections	62
SPV Restraint with turnbuckle	63
HKZ Restraint tie	64 - 65
HVL Anchoring system	66
HALFEN HKW Corner guard	67



6 HALFEN HCW Curtain Wall	68 - 80
The advantages at a glance	68
General	69
Product range	70–71
HALFEN Channel HCW 52/34 for curtain wall connection	72 - 73
Application examples	74
HALFEN Channel HTA-R and HZA-R with rebar anchors	75
Brackets HCW-ED and HCW-EW for front-of-slab installation	76 - 78
Brackets HCW-B1 and HCW-B2 for top-of-slab installation	79 - 80

7 Accessories	81 - 86	
Nuts, washers	82	
Threaded rods, hexagonal bolts, couplers, ring nuts	83	
Clamping plates	84	
Framing channels HM/HZM/HL/HZL, type overview	85	\leq
Framing channels HM/HZM/HL/HZL, application examples	86	

8 Appendix	
Index	87
Addresses/Contacts	88

BETTER SAFE THAN SORRY. The right channel for every application.

Besides excellent adjustability HALFEN Cast-in channels save considerable installation time.

The result, faster construction and therefore cost saving. HALFEN Cast-in channels are the ideal basis for easy to install, adjustable connections. A foam strip filler stops the ingress of concrete into the channel.

Features

- > adjustable
- > hot-rolled profile; suitable for dynamic loads
- > can be installed in concrete pressure and tensile-stress zones
- > with European Technical Assessment

Application

> fixing of all types of building components

Features

- > as HZA Channels
- > suitable for exceptional load cases caused by earthquake, plane crashes or explosions – for concrete crack widths up to 1.5 mm

Application

fixing of all types of building components in safety critical areas of nuclear power stations and similar nuclear facilities HALFEN Channels are suitable for various types of construction connections, for example; façades, precast concrete elements, stadium seating, in civil engineering (fixing of tunnel signals) lift guide-rails, crane runway, pipe fixings under bridges.

HALFEN Fixing systems – The intelligent alternative to drilling and welding.

Features

- > adjustable
- > load transmission in longitudinal channel direction
- > can be installed in concrete pressure and tensile-stress zones
- suitable for dynamic loads (applies for all hot-rolled and serrated DYNAGRIP[®] channels)

Application

> fixing of all types of building components

Features

> the special ribbed head anchor provides good load transfer in thin concrete elements

Application

> fastening railings on the thin front face of balcony slabs

APPLICATION EXAMPLES HALFEN CAST-IN CHANNELS Areas of Application

CURTAIN WALL

Edificio Gas Natural, Barcelona/Spain

BRIDGES

Passerelle Simone de Beauvoir, Paris/France

POWER STATIONS

Power station

Rheinenergiestadion, Cologne/Germany

HTU TRAPEZOIDAL SHEET PANELS

UPS Air Hub, Cologne Bonn Airport, Germany

ROOFS AND WALLS

Timber pitched-roof construction

Lift fixings, guide-rails

TUNNELS

Lötschberg-Base tunnel, Switzerland

HTA-CE CAST-IN CHANNELS The advantages at a glance

Apart from excellent adjustability, HALFEN Cast-in channels save considerable installation time. The result; faster construction and therefore reduced overall cost.

HALFEN HTA-CE Cast-in channels, cold-rolled

HALFEN HTA-CE Cast-in channels, hot-rolled

suitable for

dynamic loads

Safe and reliable

- > no damage to the reinforcement
- > approved for fire-resistant structural elements
- > suitable for use in concrete pressure and tensile stress zones
- > high corrosion resistance steels available
- > hot-rolled profiles suitable for dynamic loads
- > European Technical Assessment (ETA)
- > precise calculation with HALFEN Software

Quick and economical

- > adjustable anchoring
- > bolts instead of welding
- > maximum efficiency when installing matrices and rows
- > cost effective installation using standard tools
- > optimised pre-planning reduces construction time
- > large range of types available for various requirements
- > no noise, no vibration during installation

1

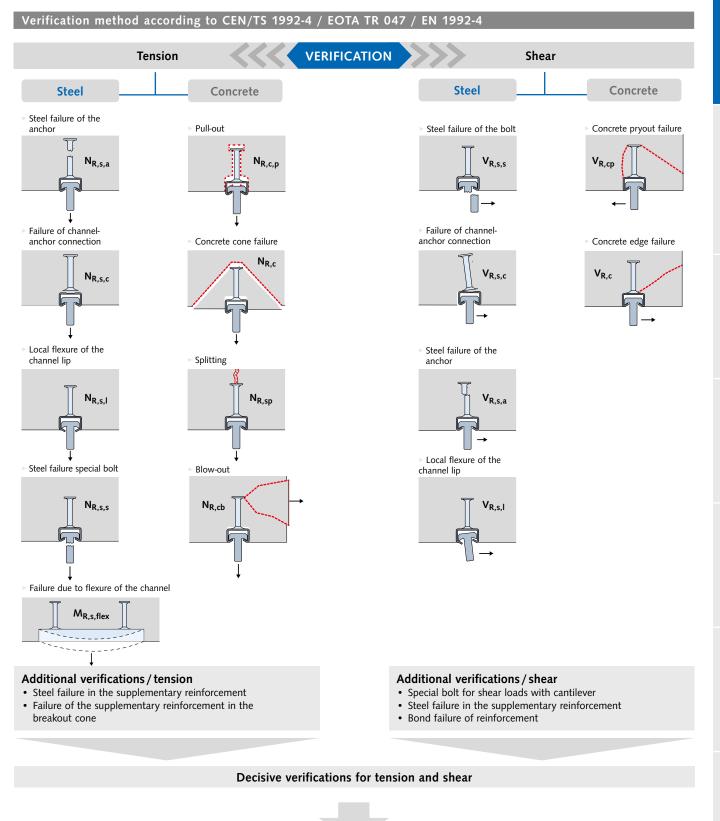
HTA-CE CHANNELS

2

HZA CHANNELS

3

HGB CHANNELS


4

CE

Assessment ETA-09/0339

HALFEN CAST-IN CHANNELS HTA-C

General

Superposition of tension and shear loadings

5

HALFEN HTA-CE CAST-IN CHANNELS General

BIM

HALFEN already has considerable experience as a BIM partner and has successfully completed various projects using the BIM methodology. All HALFEN engineers are trained to properly supervise this process. With a combination of wide experience and highly-trained engineers the increasing demand for BIM projects can be efficiently met. Examples of previous projects developed using BIM can be found at www.halfen.com \triangleright Service \triangleright BIM \triangleright BIM references.

Sustainability

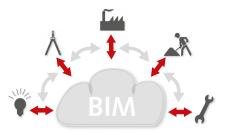
An EPD® (Environmental Product Declaration) provides transparent and comparable ecological data which helps to evaluate the sustainability of a building. Already during the planning phase the data provided here is of great significance for architects and planners. The data provided also helps to ensure the high demands on the environmental performance of the building are met. Health Product Declarations (abbrev. = HPD) complement our information on sustainability. The HPDs include a list of all components and information on the health effects of these components.

The new HPD for hot-dip galvanized HALFEN Cast-in channels helps to achieve additional points in the Leed-v4-system.

www.halfen.com \triangleright Brochures \triangleright Product declarations.

Fire-resistance / Material fatigue

ETA-09/0339 contains characteristic values under fire stress according to TR 020 "Evaluation of anchorages in concrete with regard to fire resistance" as well as characteristic values for fatigue stress.


Approvals on the internet

Currently valid approvals can be found at: **www.halfen.com** \triangleright **Brochures** \triangleright **Approvals** \triangleright **Fixing systems**. Or simply scan the code and select the required document.

Quality

Quality is the outstanding feature of our products. HALFEN materials and products are subjected to the most stringent quality control procedures. A quality inspection by the DNV GL* has verified that our quality management system meets the requirements of the ISO 9001:2015 standard.

*merger of DNV (Det Norske Veritas) and GL (Germanischer Lloyd) in 2013

Certificate no. 202384-2016-AQ-GER-DAkkS

1

2

4

7

HALFEN HTA-CE CAST-IN CHANNELS

Materials/Corroision Protection

Hot-dip galvanized FV:

Dipped in a galvanizing bath, with a temperature of approx. $460 \,^{\circ}$ C; this is a method used primarily for open-profile channels.

Zinc galvanized GVs:

HALFEN T-bolts are electrogalvanized and coated with a Cr(VI)-free thick layer passivation.

HALFEN Cast-in channels, steel, hot-dip galvanized

• Î [] • \			Steel			
			Material		Standard	Zinc coat
	T `	Channel profile	1.0038		EN 10 025-2 ①	FV: ≥ 55µm
		Channel profile	1.0044		EN 10 025-2 ①	FV: ≥ 55µm
		Bolt anchor B6	Steel		EN 10263 or EN 10269	FV: ≥ 55µm
		Weld-on anchor	Steel		EN 10 025-2	FV: ≥ 55µm
				1) Steel	according to EN 10 025-2 and I	HALFEN specification

HALFEN Bolts, galvanized steel

	~		Steel		
			Material	Standard	Zinc coat
	Bolt	Stool (Sc) 4.6 or (Sc) 9.9	EN ISO 898-1	FV: ≥ 50 µm	
		BOIL	Steel (Sc) 4.6 or (Sc) 8.8	EIN 130 090-1	GVs: ≥ 12 µm
		Hexagonal nut	Steel (Se) F ar (Se) 9	EN 898-2	FV: ≥ 50 µm
		nexagonal nut	Steel (Sc) 5 or (Sc) 8	EIN 090-2	GVs: ≥ 12 µm
		Washer	Steel	EN ISO 7089,	FV: ≥ 50 µm
		washer	Steel	EN ISO 7093	GVs: ≥ 12 µm
					(Sc) = Strength class

Stainless steel (NR):

Chromium is the most important alloy element in stainless steel. A specific chromium concentration ensures the generation of a passive layer on the surface of the steel that protects the base material against corrosion. This explains the high corrosion resistance of stainless steel.

Rost. frei

Materials:

WB = Steel, mill finished

- **FV** = Steel, hot-dip galvanized
- **GVs** = Steel, zinc galvanized (with special coating)
 - A4 = Steel, stainless 1.4571/1.4404/1.4578
- **HCR** = Steel, stainless 1.4547 / 1.4529

HALFEN Cast-in channels, stainless steel

			Sta	ainless steel	
TA		Material		Standard	Corrosion resistance class ②
	Channel pro	file 1.4404 or 1.4571		EN 10 088	III
		1.4529 or 1.4547		EN IU UOO	V
	Bolt anchor	1.4404, 1.4571 B6 or 1.4578		EN 10 088	Ш
		1.4529 or 1.4547			V
	Weld-on and	1.4404 or 1.4571		EN 10 088	III
	vveid-on and	Steel 3	E	EN 10 025-2	

HALFEN Bolts, stainless steel Stainless steel Corrosion Material Standard resistance class 2 1.4404, 1.4571, 1.4578 EN 3506-1 and ш EN 10 088 Bolt (A4-50 or A4-70) 1.4529, HCR-50 EN 3506-1 V 1.4404, 1.4571, 1.4578 ш EN 3506-2 and Hexagonal nut (A4-50, A4-70) EN 10 088 1.4529, HCR-50 V 1.4404, 1.4571 Ш Washer EN 10 088 1.4529 or 1.4547 V

② See EN 1993-1-4, table A.3 ③ Corrosion protection of mill finished anchor, see page 10

1

2

5

CURTAIN WALL

HALFEN HTA-CE CAST-IN CHANNELS

Materials/Corroision Protection

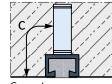
Corrosion protection requirements

	1	2	3	4
Description	Dry interior rooms	Damp interior rooms	Medium corrosion level	High level of corrosion
Definition of application areas	Anchor channels may only be used in components in indoor environments. For example: living and office spaces, schools, hospitals, commercial shops with the exception of wet rooms as in column 2.	Anchor channels may also be used in components in areas with normal humidity For example: kitchens, bathrooms and laun- dry-rooms in residential buildings. Exceptions; where permanent steam is present, and under water.	Anchor channels may also be used in outdoor environments (including industrial environ- ments and coastal regions) or in wet rooms, if con- ditions are not especially aggressive (for example: continual immersion in sea water etc. as in column 4).	Anchor channels may also be used in exceptionally aggressive environments (for example: continual immersion in sea water or in seawater spray zones, chloride environments in swim- ming pools or in environments with an extremely aggressive chemical atmosphere (for examp flue gas desulphurization plants or road tunnels where de-icer systems are in use).
Channel profile	Steel 1.0038, 1.0044; EN 10025 Hot-dip galvanized ≥ 55. m ®	Steel 1.0038, 1.0044; EN 10025 Hot-dip galvanized ≥ 55μm Stainless steel 1.4307, 1.4567, 1.4541; EN 10088	Stainless steel 1.4404, 1.4571, 1.4062, 1.4162, 1.4362 EN 10088	Stainless steel 1.4462 ②, 1.4529, 1.4547 EN 10088
Anchor	Steel 1.0038, 1.0214, 1.0401, 1.1132, 1.5525; EN 10263, EN 10269 Hot-dip galvanized 55μm ©	Steel 1.0038, 1.0214, 1.0401, 1.1132, 1.5525; EN 10263, EN 10269 Hot-dip galvanized ≥ 55 µm Stainless steel 1.4307, 1.4567, 1.4541; EN 10088	1.4404, 1.4571, 1.4362, 1.4578 EN 10088	
Special HALFEN Bolts with shaft and bolts in accordance with EN ISO 4018	Steel strength class 4.6/8.8 EN ISO 898-1 Zinc galvanized ≥ 5μm ④	Steel strength class 4.6 / 8.8; EN ISO 898-1, Hot-dip galvanized ≥ 50 µm ① ⑤ Stainless steel, strength class 50, 70 1.4307, 1.4567, 1.4541 EN ISO 3506-1	Stainless steel Strength class 50, 70 1.4404, 1.4571, 1.4362, 1.4578 EN ISO 3506-1	Stainless steel Strength class 50, 70 1.4462 ©, 1.4529, 1.4547 EN ISO 3506-1
Washers EN ISO 7089 and EN ISO 7093-1 Product classification A, 200 HV	Steel EN 10025 Zinc galvanized ≥ 5μm ⊕	Steel EN 10025 Hot-dip galvanized ≥ 50µm ① ⑤ Stainless steel Steel grade A2, A3; EN ISO 3506-1	Stainless steel Steel grade A4, A5 EN ISO 3506-1	Stainless steel 1.4462 @,1.4529, 1.4547 EN ISO 3506-1
Hexagonal nut EN ISO 4032	Steel strength class 5/8 EN ISO 898-2 Zinc galvanized ≥ 5μm ④	Steel strength class 5/8 EN ISO 898-2 Hot-dip galvanized ≥ 50µm ① ⑤ Stainless steel, strength class 70, 80 Steel grade A2, A3 EN ISO 3506-2	Stainless steel Strength class 70, 80 Steel grade A4, A5 EN ISO 3506-2	Stainless steel Strength class 70, 80 1.4462 @, 1.4529, 1.4547 EN ISO 3506-2

(1) or zinc galvanized with special coating \geq 12 μm (2) 1.4462 not suitable for swimming baths

③ Steel in accordance with EN 10025, 1.0038 not for anchor channels 28/15 and 38/17

HALFEN Channels (NR) mill finish welded-on anchors


Corrosion protection of the mill

finished weld-on anchor is based on

the following concrete cover c:

Profile HTA-CE	40/22P 40/25	52/34 54/33 50/30P 49/30	55/42	72/48 72/49
Concrete cover c [mm]	35	40	50	60

The minimum concrete cover depends on local environmental conditions and bid specifications.

Concrete cover c

HALFEN Channels (NR) made completely in stainless steel

The HALFEN Cast-in channels "entirely of stainless steel" are not restricted to any minimum concrete cover as no relevant corrosion occurs.

Areas of application

- bridge and tunnel construction (fastening of pipes, etc.)
- construction of sewage treatment plants (fixing of spillovers)
- chemical industry (installations exposed to aggressive substances)
- ventilated façades, e.g. masonry renders
- also for all structural reinforced concrete elements with higher demands on the concrete cover

④ Zinc galvanized in accordance with EN ISO 4042 ⑤ Hot-dip galvanized in accordance with EN ISO 10684 ⑥ Hot-dip galvanized in accordance with EN ISO 1461

HALFEN Channels made in stainless steel - HCR

The high corrosion resistance (HCR) HALFEN Cast-in channels are mandatory when high concentrations of chlorides, sulphur and nitrogen oxides are present.

 \mathbf{X}

Areas of application

- road tunnels
- structures in salt water
- indoor swimming pools
- · areas not routinely cleaned
- · poorly ventilated parking garages
- in narrow, major city streets

2

HZA CHANNELS

3

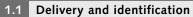
HGB CHANNELS

4

HTU CHANNELS

5

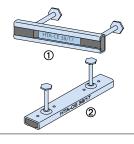
ROOF AND WALL


6

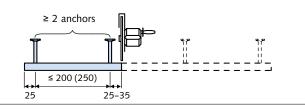
CURTAIN WALL

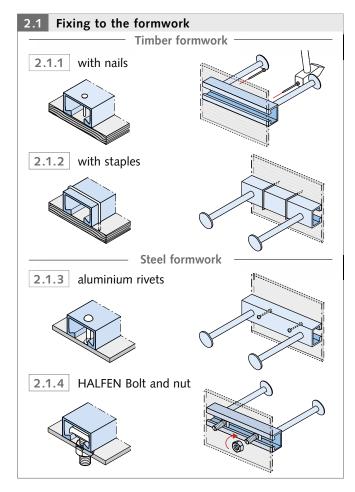
7

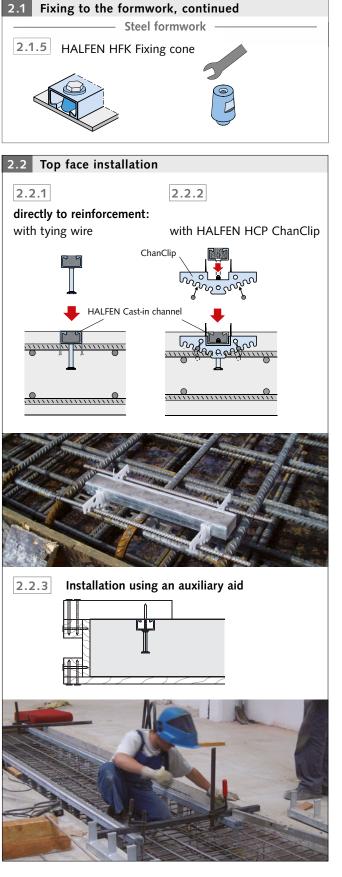
ACCESSORIES


HALFEN HTA-CE CAST-IN CHANNELS Installation/Assembly

HALFEN can supply ready to install short channels and standard lengths.


Product identification


inside the channel
 also on the channel side



1.2 Installing to formwork

If required, HALFEN Cast-in channels can also be cut to size on site.

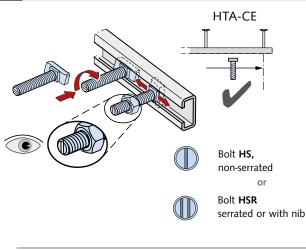
1

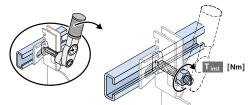
2

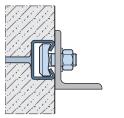
5

HALFEN HTA-CE CAST-IN CHANNELS Installation/Assembly

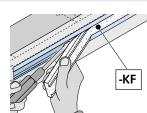
3.1 Removing the filler


Strip filler, available in two versions:




KF - PE strip filler with reinforcement layer

4.1 Installing HALFEN Bolts


Direct attachment ①

Square washer VUS

Surface-flush installation Non-flush installation

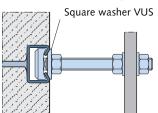
① If the front surface of the channel is set back from the concrete surface, the attached structure must be shimmed with a washer (VUS). In case of shear stress, add bolt flexure to the tensile force.

Removing the strip filler Grip the strip filler at one

end and pull out in one piece by hand; use a tool, e.g. a screwdriver.

Safe assembly with HALFEN Cast-in channels

HALFEN Bolts can be inserted anywhere in the channel slot, turned 90° and then locked in place by tightening the nut. Do not position bolts at channel ends past the last anchor. On channels with bolt anchors, the anchor locations are visible through the channel slot.


Check ()

Bolts: After installation check that the bolts are properly aligned; the notch or notches in the tip of the shank must be at right angles to the longitudinal axis of the channel.

Fixings

The bolt heads must sit flush on both lips of the anchor channel and be secured by tightening the nut with a torque wrench with the required value. Observe the torque values in the tables on page 20.

Stand-off installation 2

HALFEN Channel: HTA-CE 49/30

HS 50/30 - M16

VUS 49/30 - M16

Assembly instructions on the internet

Multi-language assembly instructions can be found at www.halfen.com \triangleright Brochures \triangleright Installation Instructions. Or scan the code and select the required document.

Example:

Washer:

HALFEN Bolt:

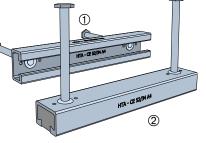
6

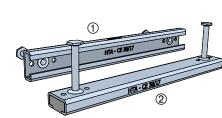
CURTAIN WALL

7

ACCESSORIES

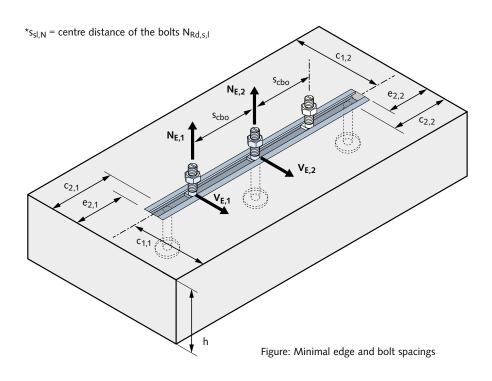
2 Always install a square washer for stand-off installations.


HALFEN HTA-CE CAST-IN CHANNELS Identification/Geometry


Identification

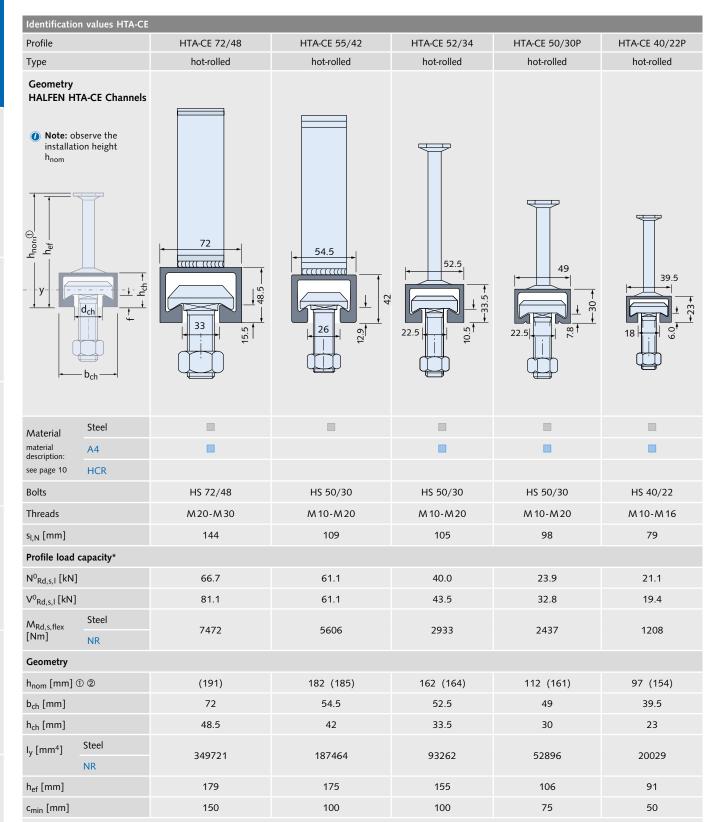
Channel material	Type identification
1.0038 / 1.0044	HTA-CE 38/17
A4: 1.4404 / 1.4571	HTA-CE 38/17 - A4
HCR: 1.4529 / 1.4547	HTA-CE 38/17 - HCR

Type identification


- ① Inside on the bottom of the channel.
- ② Additionally on the channel side

Minimum edge distances and minimum bolt spacing

Anchors must be installed at a minimum distance from the component edges. The distance depends on the selected channel profile. According to the ETA, the spacing between bolts s_{cbo} must not be less than $5 \times d_s$. Reduction of the load bearing capacity is required if $s_{cbo} < s_{sl,N}^*$ (see table on page 16). The concrete load-bearing capacity must be verified for each individual case using the HALFEN Software!



Edge and bo	lt spacing	[mm]		
HTA-CE Profiles	м	s _{s,min}	c _{min}	e _{min}
	6	30	40	15
	8	40	40	15
28/15	10	50	40	15
	12	60	40	15
	10	50	50	25
38/17	12	60	50	25
	16	80	50	25
40/25	10	50	50	25
40/25 40/22P	12	60	50	25
40/221	16	80	50	25
	10	50	75	50
49/30	12	60	75	50
49/50	16	80	75	50
	20	100	75	50
	10	50	75	40
50/30P	12	60	75	40
50/30F	16	80	75	40
	20	100	75	40
	10	50	100	65
52/34	12	60	100	65
54/33	16	80	100	65
	20	100	100	65
	10	50	100	65
55/42	12	60	100	65
JJ/ 4 2	16	80	100	65
	20	100	100	65
	20	100	150	115
72/48	24	120	150	115
72/40	27	135	150	115
	30	150	150	115

4

HALFEN HTA-CE CAST-IN CHANNELS

Product range - Overview: channel and bolts

* Concrete load capacity has to be verified for each individual case (taking the geometric boundary conditions into account).

 $c_{min} = minimal \ spacing \ channel/concrete \ edge$

NR = Stainless steel

 s_{slb} = axial spacing for bolts for N⁰_{Rd,s,l}

 $N^0_{Rd,s,l}$ = channel lip load capacity (tension) $V^0_{Rd,s,l}$ = channel lip load capacity (shear)

 ① Nominal size and tolerance
 ② () value in brackets is for weld-on I- or T- anchors

3

HGB CHANNELS

4

HTU CHANNELS

5

ROOF AND WALL

6

CURTAIN WALL

7

HALFEN HTA-CE CAST-IN CHANNELS

Product range - Overview: channel and bolts

Identification v	values HTA-CE					
Profile		HTA-CE 54/33	HTA-CE 49/30	HTA-CE 40/25	HTA-CE 38/17	HTA-CE 28/15
Туре		cold-rolled	cold-rolled	cold-rolled	cold-rolled	cold-rolled
Geometry HALFEN Cha	innels HTA-CE					
Note: obset installation h _{nom}	height					
Material	Steel					
material	A4					
description:	HCR					
Bolts		HS 50/30	HS 50/30	HS 40/22	HS 38/17	HS 28/15
Threads		M10-M20	M10-M20	M 10-M 16	M 10-M 16	M6-M12
s _{l,N} [mm]		107	100	80	76	56
Profile load ca	pacity*					
N ^o _{Rd,s,I} [kN] V ^o _{Rd,s,I} [kN]		30.6	17.2	11.1	10.0	5.0
M _{Rd,s,flex}	Steel NR	2595	1455	931	504	276
Geometry						
h _{nom} [mm] ① (2	162 (164)	103 (101)	89 (89)	81 (82)	50 (79)
b _{ch} [mm]		54	50	40	38	28.0
h _{ch} [mm]		33	30	25	17.5	15.25
	Steel	72079	41827	20570 19097	8547	4060
	NR					
h _{ef} [mm]	NR	155	94	79	76	45

* Concrete load capacity has to be verified for each individual case (taking the geometric boundary conditions into account).

c_{min} = minimal spacing channel/concrete edge

NR = Stainless steel

 s_{slb} = axial spacing for bolts for $N^0_{Rd,s,l}$

 $N^{0}_{Rd,s,l}$ = channel lip load capacity (tension) $V^{0}_{Rd,s,l}$ = channel lip load capacity (shear)

ion) ① Nominal size and tolerance (r) ② () value in brackets is for

weld-on I- or T-anchors

1

5

7

HALFEN HTA-CE CAST-IN CHANNELS Product range

Standard product range

The standard HALFEN Cast-in channel product range with European Technical Approval is listed in the following table. See also current HALFEN Price list. Other lengths are available on request.

Supplied lengths and number of anchors

	L	ength [mm] / Number of ancho	rs	
HTA-CE 72/48	HTA-CE 55/42	HTA-CE 40/25, 50/30P, 49/30, 52/34, 54/33	HTA-CE 40/22P	HTA-CE 28/15, 38/17
150 /2	150 /2	150 /2	150 /2	100 /2
200 /2	200 /2	200 /2	200 /2	150 /2
250 /2	250 /2	250 /2	250 /2	200 /2
300 /2	300 /2	300 /2	300 /2	250 /2
350 /3	350 /3	350 /3	350 /3	300 /3
400 /3	400 /3	400 /3	400 /3	350 /3
550 /3	550 /3	550 /3	550 /3	450 /3
1050 /5	1050 /5	800/4	800 /4 ^②	550 /4
6070 /25	6070 /25	1050 /5	1050 /5	850 /5
		3030 /13 ^①	1300 /6 ^②	1050 /6
		6070 /25	1550/7 [®]	3030 /16
			1800 /8 ^②	6070 /31
			2050 /9 [®]	
			2300 /10 [@]	
			2550 /11 ²	
			3030 /13 [@]	
			6070 /25	
		spacing 0 mm		Anchor spacing ≤ 200 mm
D Does not apply to HTA-CE 5	2/34, HTA-CE 54/33			

Does not apply to HTA-CE 52/34, HTA-CE 54/33
 Does not apply to HTA-CE 40/22P - A4

1

2

CURTAIN WALL

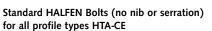
7

ACCESSORIES

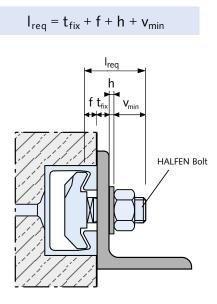
HALFEN HTA CAST-IN CHANNELS HALFEN HS Bolts

HALFEN Bolts — Type HS

- two direction load capacity
- identified on bolt tip with **1 notch**


Material grade A4-50/A4-70 Stainless steel

Strength class 4.6/8.8


galvanized (GVs) or hot-dip galvanized (FV)

Strength class 50 Stainless steel (1.4529/1.4547)

Calculating the bolt length I_{req} for HALFEN Bolts

Dimensions V _{min}	
Bolt diameter	v _{min} [mm]
M6	11.0
M8	12.5
M10	14.5
M12	17.0
M16	20.5
M20	26.0
M24	29.0
M27	31.5
M30	33.5

f [mm]
2.3
3.0
6.0
5.6
7.4
7.9
10.5
7.9
12.9
15.5

Manufacturer

→ (for individual dimensions)

Strength class resp. property class

H 4.6

HALFEN

- I_{req} = required bolt length
- t_{fix} = thickness of clamped component
 - = profile lip height

f

- h = washer thickness
- v_{min} = nut height EN ISO 4032 + overhang approximately 5 mm (for M20: 7 mm)

Bolt design values

The table on the right lists the design resistance of HALFEN Bolts with different thread diameters, materials and strength classes.

 $N_{Rd,s,s}$ is the resistance against tension loads, $V_{Rd,s,s}$ is the the resistance against shear loads and $M^0_{Rd,s,s}$ is the flexural resistance when subjected to transverse load induced with a cantilever.

Design	resistanc	e									
Materi	al / Strengt	h class:	Μ6	M 8	M10	M12	M16	M 20	M24	M27	M 30
	N _{Rd,s,s}	[kN]	4.0	7.3	11.6	16.9	31.4	49.0	70.6	91.8	112.2
4.6	$V_{Rd,s,s}$	[kN]	2.9	5.3	8.3	12.1	22.6	35.2	50.7	66.0	80.6
	M ⁰ Rd,s,s	[Nm]	3.8	9.0	17.9	31.4	79.8	155.4	268.9	398.7	538.7
	N _{Rd,s,s}	[kN]	10.7	19.5	30.9	44.9	83.7	130.7	188.3	244.8	299.2
8.8	V _{Rd,s,s}	[kN]	6.4	11.7	18.6	27.0	50.2	78.4	113.0	146.9	179.5
	M ⁰ Rd,s,s	[Nm]	9.8	24.0	47.8	83.8	213.1	415.4	718.4	1065.2	1439.4
	N _{Rd,s,s}	[kN]	3.5	6.4	10.1	14.8	27.4	42.8	61.7	80.2	98.1
A4-50	V _{Rd,s,s}	[kN]	2.5	4.6	7.3	10.6	19.8	30.9	44.5	57.9	70.7
	M ⁰ _{Rd,s,s}	[Nm]	3.2	7.9	15.7	27.5	70.0	136.3	235.8	349.7	472.5
	N _{Rd,s,s}	[kN]	7.5	13.7	21.7	31.6	58.8	91.7	132.1	171.8	210.0
A4-70	V _{Rd,s,s}	[kN]	5.4	9.9	15.6	22.7	42.2	66.0	95.1	123.6	151.0
	M ⁰ _{Rd,s,s}	[Nm]	6.9	16.8	33.5	58.8	149.4	291.3	503.7	746.9	1009.2

1

2

HTU CHANNELS

HALFEN HTA-CE CAST-IN CHANNELS HALFEN HS Bolts

ALFEN HS Bolts uitable for profile		HTA-CE	72/48		HTA-C	CE 55/42, 52/34,	54/33, 50/30P.	49/30	
Bolt			2/48				0/30		
Bolt dimensions									
l [mm]	M20	M24	M27	M30	M10	M12	M16	M20	
30				-	FV4.6 GVs4.6	GVs4.6	GVs4.6 A4-50	-	
40	-			-	GVs4.6	FV4.6 GVs4.6	FV4.6 GVs4.6 GVs8.8 A4-50		
45	- - -	- - -	- - -	- - -		GVs8.8	- - -	GVs4.6 GVs8.8 A4-50	
50	FV4.6	FV4.6 A4-50	- - - - -		GVs4.6	GVs4.6	FV4.6 GVs4.6 GVs8.8 A4-50 HCR-50*	- - - - -	
55	-	- - - -	- - - -		-	- - - -	- - - -	FV4.6 GVs4.6 A4-50 A4-70*	
60	FV8.8					FV4.6 FV8.8* GVs4.6 GVs8.8	FV8.8 GVs4.6 GVs8.8 A4-50	GVs8.8	
70	-	-	-	-	-	-	-	-	
75	FV4.6 GVs8.8	FV4.6 FV8.8	FV4.6	FV4.6				GVs4.6 A4-50 A4-70*	
80						FV8.8* GVs4.6 GVs8.8	FV8.8* GVs4.6 GVs8.8 A4-50	FV4.6* GVs8.8	
100	FV4.6 GVs8.8	FV4.6 GVs8.8 A4-50	FV8.8	FV4.6 		GVs4.6 A4-50	FV4.6 GVs4.6 GVs8.8 HCR-50*	FV4.6 GVs4.6 GVs8.8 A4-50 A4-70*	
125	FV4.6	- FV4.6	-	FV4.6	-	GVs4.6	GVs4.6 FV4.6	GVs4.6 A4-50*	
150		GVs8.8	-		-	GVs4.6	GVs4.6 A4-50 HCR-50*	GVs4.6 GVs8.8 A4-50*	
200	FV4.6	FV4.6	-	FV4.6	-	GVs4.6	GVs4.6	GVs4.6	
300	-	_	_			_	GVs4.6	GVs4.6*	

Material types: see page 10 *on request **()** Other bolt lengths and materials on request!

1

4

ROOF AND WALL

6

CURTAIN WALL

7

HALFEN HTA-CE CAST-IN CHANNELS HALFEN HS Bolts

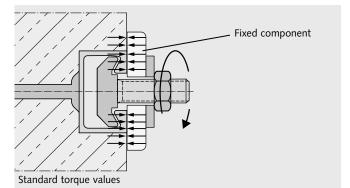
Suitable for profile	HTA	-CE 40/22P, 4	0/25		HTA-CE 38/17	7		HTA-CI	E 28/15		
Bolt		HS 40/22			HS 38/17			HS 2	8/15		
Bolt dimensions		33.9			31.6					F 	
l [mm]	M10	M12	M16	M10	M12	M16	M6	M8	M10	M12	
30	GVs4.6	FV4.6 GVs4.6 GVs8.8 A4-50	GVs4.6 A4-50	FV4.6 GVs4.6	FV4.6 GVs4.6	GVs4.6	GVs4.6	GVs4.6	FV4.6 GVs4.6	GVs4.6	
	A4-70	-	-	A4-70	A4-70	-	-	A4-70	A4-70	-	
40	GVs4.6	GVs4.6 GVs8.8 A4-50 A4-70	GVs4.6	GVs4.6	GVs4.6	FV4.6 GVs4.6 A4-50	GVs4.6	GVs4.6	FV8.8 GVs4.6		
45	-	-	-	-	-	-	-	-	-	-	
45	-	-	-	-	-	-	-	-	-		
50	GVs4.6	FV4.6 GVs4.6 A4-50	FV4.6 GVs4.6 A4-50 A4-70	FV4.6 GVs4.6 HCR-50*	FV4.6 GVs4.6 A4-70	FV4.6 GVs4.6 A4-50 HCR-50*		GVs4.6	FV4.6 GVs4.6 A4-50 HCR-50*	GVs4.6	
	-	-	-	-	-	-	-	-	-	-	
55	-	-	-	-	-		-	-	-	-	
60	GVs4.6	FV4.6 FV8.8* GVs4.6 GVs8.8	FV4.6 FV8.8 GVs4.6 GVs8.8	GVs4.6	GVs4.6 GVs8.8 A4-70	FV8.8 GVs4.6 A4-50		GVs4.6	GVs4.6	-	
70	-	-	-	-	FV8.8	-	-	-	-	-	
75	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -				- - - - -		
80	GVs4.6	FV4.6 GVs4.6 GVs8.8 A4-50	GVs4.6 GVs8.8 A4-50	GVs4.6	GVs4.6	FV4.6 GVs4.6 A4-50		GVs4.6	GVs4.6	GVs4.6	
100	GVs4.6	GVs4.6 GVs8.8	FV4.6 GVs4.6 A4-50	GVs4.6 	GVs4.6 A4-50	FV4.6 GVs4.6 HCR-50*	- - - - - -	GVs4.6	GVs4.6 A4-50* HCR-50*		
125	-	GVs4.6	GVs4.6	-	GVs4.6	GVs4.6	-	-	GVs4.6 A4-50*	-	
150		GVs4.6	GVs4.6	GVs4.6	GVs4.6	GVs4.6 HCR-50*		GVs4.6	GVs4.6 A4-50*	-	
200	-	GVs4.6	GVs4.6	-	GVs4.6	GVs4.6	-	-	GVs4.6 A4-50*	-	
300	-	-	GVs4.6	-	_	-		-	-		

Material types: see page 10 *on request 0 Other bolt lengths and materials on request!

2

1

HTA-CE CHANNELS

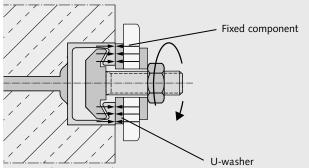

HGB CHANNELS

HALFEN HTA-CE CAST-IN CHANNELS HALFEN HS Bolts

Torque values HS

Standard

Components are braced against the concrete and anchor channel. Torque is applied as in the following table and must not be exceeded.



Standard: Recommend	ed torque values T _{inst}	
HTA-CE Profile	HALFEN Bolt HS M [mm]	Torque value T _{inst} [Nm] Steel 4.6; 8.8 Stainless steel Strength class 50 Strength class 70
28/15	6 8 10 12	- 8 13 15
38/17	10 12 16	15 25 40
40/22P 40/25	10 12 16	15 25 45
49/30 50/30P	10 12 16 20	15 25 60 75
52/34 54/33	10 12 16 20	15 25 60 120
55/42	10 12 16 20	15 25 60 120
72/48	20 24 27 30	120 200 300 380

Steel-Steel

Components are braced against the anchor channels using suitable washers. Torque is applied as in the following table and

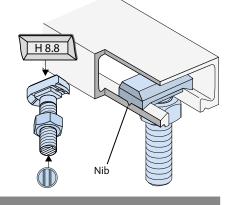
must not be exceeded.

Torque values steel-steel

Steel-Steel: R	ecommended to	rque valu	es T _{inst}		
			Torque v	value T _{inst} [Nr	n]
HTA-CE Profile	HALFEN Bolt HS M	Steel	Steel	Stainless steel	Stainless steel
	[mm]	4.6	8.8	Strength class 50	Strength class 70
	6	3	-	3	-
29/45	8	8	20	8	15
28/15	10	15	40	15	30
	12	25	70	25	50
	10	15	40	15	30
38/17	12	25	70	25	50
	16	65	180	60	130
40/220	10	15	40	15	30
40/22P 40/25	12	25	70	25	50
10/25	16	65	180	60	130
49/30 50/30P	10	15	40	15	30
	12	25	70	25	50
	16	65	180	60	130
	20	130	360	120	250
	10	15	40	15	30
52/34	12	25	70	25	50
54/33	16	65	180	60	130
	20	130	360	120	250
	10	15	40	15	30
55/42	12	25	70	25	50
55/42	16	65	180	60	130
	20	130	360	120	250
	20	130	360	120	250
72/48	24	230	620	200	440
/2/48	27	340	900	300	650
	30	460	1200	400	850

() Torque values apply only to bolts in delivery condition (unlubricated).

2


7

HALFEN HTA-CE CAST-IN CHANNELS HALFEN HSR Bolts with nib

HALFEN Bolts — Type HSR (not ETA approved)

- only for hot-rolled profiles: 40/22P, 50/30P, 52/34, 72/48
- only for normal steel: WB and FV
- · load capacity in all directions
- · load capacity in channel longitudinal direction according to expert report
- · identification on bolt tip with 2 notches

HALFEN	Bolts	with	nib
HALFEN	Bolts	with	nıb

Bolt design values HSR

Available HSF	र				Torque values HSR	
Suitable for profile	72/48	52/34,	50/30P	40/22P	HSR 8.8	Torque values [Nm]
Bolt	HSR 72/48	HSR 5	50/30	HSR 40/22		
	- 5 -				M16	200
	59.5	1	1.51	33.9	M20	400
Bolt	T and	r é				
dimensions		_ ``			Load capacity HSR	
			<u>r</u>			Grade 8.8 in channel longitudinal direction
l [mm]	M20	M16	M20	M16		according to expert report
40	-	FV8.8	-	GVs8.8		
45			GVs8.8	-	Bolt HSR	F _{Rd} [kN]
60		GVs8.8	GVs8.8	GVs8.8, FV8.8*	40/22 - M16	7.0
75	FV8.8		GVs8.8	-	50/30 - M16	7.0
GVs = Zinc a	alvanized with s	special coating			50/30 - M20	10.5
	ip galvanized	prosiai couting		* on request	72/48 - M20	10.5

HALFEN Bolts HS: Design value; load bearing capacity F_{Rd}

Design value F _{Rd} [kN] in channel longitudinal direction (for each HALFEN HS Bolt)								
	for steel	profiles	for profiles in	stainless steel				
		Bolt type HS w	vith strength class					
Thread Ø	4.6	8.8	A4-50	A4-70				
M6	0.14	0.56		-				
M8	0.28	0.98	0.	.28				
M 10	0.42	1.54	0.	.42				
M12	0.70	2.24	0.70					
M16	1.26	4.20	1.26					
M20	1.96	6.58	1.	.96				
M24	2.80	9.52	2.	.80				
M27	3.64	12.46		-				
M 30	4.48	15.26		-				
() Values and ann	liaah la with tarawa a	nomente Teste al a	tool (coo toblo on the	laft on name 20)				

Values only applicable with torque moments T_{inst} steel-steel (see table on the left, on page 20)

Not included in the ETA!

Following combination can be used in supporting structures subjected to loads in channel longitudinal direction:

• hot-rolled, smooth, hot-dip galvanized HALFEN Cast-in channels with HALFEN HSR Bolts with nib

If loads in the channel's longitudinal direction have been verified, we recommend using serrated HALFEN HZA Channels with serrated HALFEN HZS Bolts. See pages 30-31.

1

HALFEN HTA-CE CAST-IN CHANNELS Application Examples

CURTAIN WALL

1

HTA-CE CHANNELS

2

HZA CHANNELS

3

HGB CHANNELS

4

Fixings for curtain wall façades

SPORTS

Seat fixing in stadiums

NOISE BARRIERS

Fixings of noise barriers to concrete posts

UTILITY TUNNELS

Utility fixings in TBM tunnels with curved anchor channels

CURTAIN WALL

Fixings for curtain wall façades

LIFTS/ELEVATOR FIXINGS

Fixing guide-rails with HALFEN Channels

BRIDGES

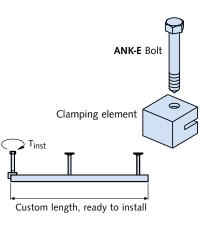
Fixings for drainage systems

TUNNELS

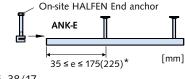
Fixing of overhead cables in railway tunnels

HALFEN HTA-CE CAST-IN CHANNELS

Custom Anchors – Anchor Variations (Not ETA Approved)


ANK-E end anchor; for on-site custom cut-length of HALFEN Cast-in channels

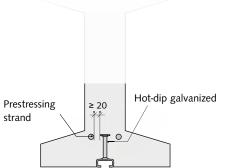
Notes for assembling end anchor, type ANK-E


- Cut the HALFEN Cast-in channel at the selected point. The cut face must be at a right angle to the longitudinal axis of the channel. The end projection "e" should not be less than 35 mm and not more than 175(225)mm*.
- Select the correct **ANK-E** End anchor for the HALFEN Cast-in channel profile; see table on the right. Slide the clamping element on to the back of the channel. If necessary, push in the foam filler at the end of the channel.
- Tighten the bolt by applying the required torque. See table (right) for correct torque value.

End anchor selecti	on		
for profile	End anchor	Thread	Torque T _{inst} [Nm]
28/15 - FV	ANK-E1 - FV	M8	10
28/15 - A4	ANK-E1 - A4	M8	10
38/17 - FV			
40/25 - FV	ANK-E2 - FV	M10	20
41/22 - FV ^①			
38/17 - A4			
40/25 - A4	ANK-E2 - A4	M10	20
41/22 - A4 ^①			

③ Short HZA 41/22 sections may be used with one end anchor only. Not included in the approval.

Custom lengths



* 175: for 28/15, 38/17 225: for 40/25, 41/22

HALFEN Anchor channels, hot-dip galvanized with stainless steel anchors

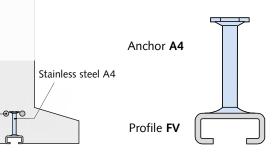
Requirements

according to EN 1992-1-1/NA (EC 2 with German National Annex, 2nd edition, 2016, chapter 8.10.1.1) *"Ensure at least 20mm concrete between pre-stressed tension strands and galvanized components."* Otherwise there is a risk of hydrogen induced cracking.

Solution

Prestressing

strand

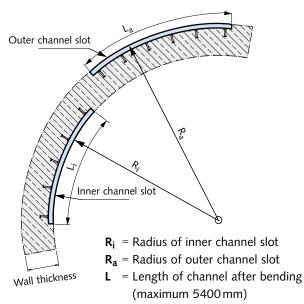

If hot-dip galvanized channels are used together with stainless steel bolt-anchors then the pre-stressed tension-strands are allowed to have contact with the stainless steel bolt anchor.

Types:

Lengths available: up to 6.07 m

Available profiles:

- 50/30P
- 49/30
- 40/25
- 38/17



2

HALFEN HTA-CE CAST-IN CHANNELS

Available Types – HTA-CS/Channel Pairs/Corner Elements

HALFEN HTA-CS Channels – Curved Solution

Areas of application:

- tunnel construction
- reinforced concrete tunnels for service utilities
- curved walls
- sewage plants

Ordering example:

HALFEN Cast-in channel, curved

HTA-CS 52/34-Q - A4, R_i = 4000 mm, L = 1050 mm

Curved HALFEN Cast-in channels in tunnel segments

Smallest ra	Smallest radius[m]*											
Profile	Material	HTA-CS 72/48	HTA-CS 54/33	HTA-CS 52/34	HTA-CS 50/30P	HTA-CS 49/30	HTA-CS 40/22P	HTA-CS 40/25	HTA-CS 38/17	HTA-CS 28/15		
Inner channel slot:		on request	0.80 m	0.75 m	on request	0.80 m	on request	1.10 m	0.70 m	0.75 m		
min. R _i		on request	0.80 m	0.80 m	on request	0.80 m	on request	0.90 m	0.70 m	0.75 m		
Outer channel slot:		on request	4.00 m	3.60 m	on request	3.00 m	on request	2.20 m	3.20 m	2.00 m		
min. R _a		on request	4.00 m	3.60 m	on request	5.70 m	on request	1.70 m	5.40 m	7.80 m		

HALFEN Channel pairs

🔲 hot-dip galvanized 🛛 📃 stainless A4

Material/type:

Channel (Type straight or curved): **FV** = Hot-dip galvanized

A4 = Stainless steel

Spacer:

Reinforced concrete B500B or B500B/A NR, Ø 10-16 mm Recommended for stainless steel type spacers in: B500B/A NR.

Ordering example:

Type:HALFEN Channel pair HTA-CE 38/17Dimensions:L = $350 \, \text{mm}$, a = $200 \, \text{mm}$ Material:hot-dip galvanized, with fillerRadius:R_i =... (for curved type)

HALFEN Corner channel

* please contact our technical support team for more detailed information

Material/type:

Channel and anchor: FV = Hot-dip galvanized A4 = Stainless steel

Standard type:

a/b = 125/250 mm Other lengths for a and b and other profiles are available on request

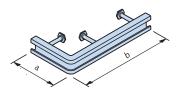


Figure: HTA-CE 38/17 - Corner piece

Area of application:

- fixing for HALFEN Console anchors for supporting brickwork cladding
- other near edge fixings
 - © 2019 HALFEN · B 20-E · www.halfen.com

1

2

6

CURTAIN WALL

HALFEN HTA-CE CAST-IN CHANNELS Calculation Basics

General

The following information is necessary to verify an anchor channel:

- > type of HALFEN Cast-in channel and material
- > length of the HALFEN Cast-in channel with number of anchors and spacing
- > position of the HALFEN Cast-in channel in the concrete, defined by its distance from the lower, upper, left and right edges of the component
- > thickness of the concrete elements
- > concrete strength class
- > condition of the concrete; cracked or verified as non-cracked
- > dense reinforcement in the vicinity of the anchor channel
- > HALFEN T-head bolt thread size
- > bolt positions
- > tensile load and shear load of each bolt

Verification method

5. Verify anchor pull-out failure 1. Select channel. (tension loading). 6. Verify concrete cone failure (tension loading). 2. Verify local load application (channel lips) for tension, shear H Tip: and combined loading. A free, simple to use calculation software to simplify planning 7. Verify pry-out failure can be downloaded at (loading in shear). www.halfen.com. 3. Calculate the anchor loads resulting from tensile loads and 8. Verify concrete edge failure If verification is negative, shear loads according to the (loading in shear) considering a determine required additional load influence model (unfavourpossible structural edge reinforcereinforcement. able anchor and load position). ment. 9. Verify concrete failure for 4. Verify the connection If last verification is negative, combined loading, (combination between anchor and channel determine required additional of 6. and 7. as well as combination reinforcement. (tension loading). of 6. and 8.).

Technical support

Engineering services and technical support for your individual projects. Our contact information can be

found on page 88 of this catalogue.

Design resistances for dynamic loads, with dimensioning example, are given at page 37. 2

HZA CHANNELS

3

HGB CHANNELS

HALFEN HTA-CE CAST-IN CHANNELS Software

HALFEN HTA-CE Software

The HALFEN Calculation program for HALFEN Cast-in channels according to the ETA provides the user with a convenient and very powerful calculation tool.

Verifications

CEN/TS 1992-4 and EOTA TR047 require a wide range of verifications for cast-in channels and the concrete used. These verifications are processed by the user-friendly HALFEN Software. In just a few seconds the user is provided with a list of suitable HALFEN Cast-in channels for the relevant load situation.

Boundary conditions

The calculation takes into account all necessary boundary conditions, typical examples being:

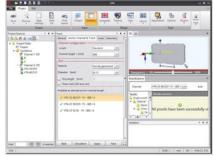
- > cracked or non-cracked concrete
- > the geometry of the concrete components, in particular the distances from the channel to the component edge
- > various reinforcement patterns
- > consideration of several dimensioning or characteristic loads
- > positioning of the loads with a definable adjustment range, and the option of shifting the defined bolt pattern along the complete channel length
- > verification of the required HALFEN T-head bolts and if required also for stand-off installations

Input

The geometry and loads are entered interactively. Entries are displayed promptly in a 3D graphic. Entries can also be changed directly in the graphic. Click on the load, the measurement or the component line you want to change to make the required modification.

Input loads

In addition to direct input of bolt loads, it is also possible to calculate the resulting loads by entering the actions/loads caused by secondary components (for example, curtain wall applications).


Results

After calculation, the software output provides either the results for a preselected profile, or in the case of automatic selection a list of all suitable profiles. Profiles and T-bolts with in-complete verifications are high-lighted in red.

Screenshot 1: The HALFEN HTA-CE Software start screen

Screenshot 2: Input screen, HALFEN HTA-CE Software

Screenshot 3: Interactive 3D display

Not M	ADA			
Reality or a				
Channel (+5k-CL 10/10 P + 5V - 530 / 3) =	0 INR 05303011127748	(r)		
a 🙀 Realts				
 Single proch. Channel 	The anchor proof could be provided successfully.	beta_N_x = 5.167		
Channellip failure	Andhar pasition: u = 25 mm	stellarion for certil chemits under shoe landna-		
a 🔒 Detain A 🔒 Banding Salura B, Detain	Load offset do + -375 mm, cp1 + 25 mm Logiting Nation - 5 str Mil With + 1 Strink	Shert halow , connection between archiv and channel $\nabla B_{n,s}(r+3)$ with Gammadria, $rr + 18$ $\nabla B_{n,s}(r+12,2)$ wi		
 Anabar prach Anabar prach 	Welfvations for cast in charrons under brecht basting-	546_V_H = 8.40		
(MS) Nutri Concerne (22%) Nutri Concerne (22%) Nutri Concerne ((23%) Nutri Concerne (Territoria and a set of the set o	an out failure Vers_op = to Even Gaerman, g = 1.5 Vers_op = 36.21 etc		
(115) Kat - Steel Sala	1450, N. H + 5.228	bets_V_0 + 0.048		
(1945) (2) - Convents # (c) (2010 N ₁ + K ₂) + Conv (2010 N ₁ + K ₂) - Conv (2010 N ₁ + K ₂) - Conv (2010 N ₂) + K ₂ - Convent (2010 N ₂) + K ₂ - Convent (2010 N ₂) + K ₂ - Convent	$\label{eq:second} \begin{array}{l} \mbox{second} \mbox$	$ \begin{array}{l} \hline Contrasting adjust limiters \\ regring a > 4.0 \\ signa, (x) = 0.70 \\ signa, ($		
Endor DINS Num-Commente DINS Num-Commente DINS Num-Seed Nat DINS Num-Commente	Cencords.com.failure ajula_i.ov = 5.50° ajula_i.ov = 0.50° ajula_i.ov = 0.50° Poi.ovi>= 1.5			
1952 V. sp Concrete F	P9U07UN = 18	combination of tension and alway loading -		
DBN V(x - Concrete 1 DBN V(x - Kya - Con DBN V(x - Kya - Con DBN V(x - Kya - Con	MRx_c = 20.47.45 Optimulal_c = 1.5 MRx_c = 10.01.00	Steel Johns, connection Johnson and channel (Dem Nac/2+Dem (sac/2)+0.003		
a phi tor - tor - Cont				

Screenshot 4: Results list

2

HZA CHANNELS

3

HGB CHANNELS

4

HTU CHANNELS

5

ROOF AND WALL

6

CURTAIN WALL

7

HALFEN HTA-CE CAST-IN CHANNELS Software

HALFEN HTA-CE Software

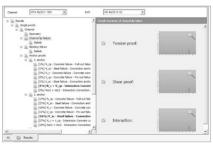
Visual control

All verifications for the current channel profile are listed in a tree structure. Green check-marks indicate successful verifications. Red check-marks indicate unsatisfactory verifications.

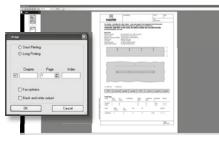
For further visual control a progress bar on the right indicates the status of the verification process. Here too, red bars mean that a load has been exceeded, while green bars symbolize verifications that meet the criteria.

Detailed calculation information (with load positions, section sizes and utilization factors) can also be selected in a tree menu.

After selecting a HALFEN Cast-in channel and suitable bolts, the dimensioning results can be imported into the data list and saved.


Print-outs

Print-outs are possible in a brief and in a verifiable long version. The long version includes all decisive verifications, a diagram of necessary reinforcement and a 2D graphic of the geometry and load.


The latest version of the dimensioning program is available for download on the Internet at *www.halfen.com*.

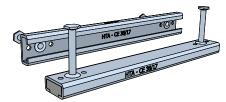
System requirements:

- Windows 10, Windows 8, Windows 7,
- Microsoft .NET Framework 4.6

Screenshot 5: Overview of results

Screenshot 6: Print preview

Tender text


HALFEN HTA-CE type Channel 49/30 - A4 - 350 - KF - ANK.A4

HALFEN HTA-CE Channel 49/30 with smooth channel lips for adjustable fixing of components,

according to European Technical Assessment ETA-09/0339, suitable for anchoring in reinforced or non-reinforced standard concrete in a strength class of at least C12/15 and a maximum C90/105 in accordance with EN 206 under quasi-static loading as well as fire exposure.

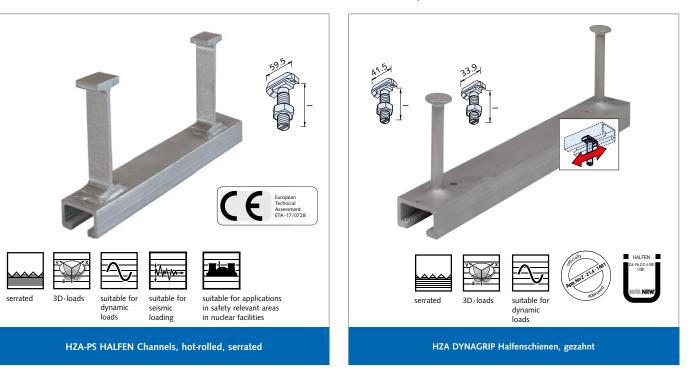
Type HTA-CE 49/30 - A4 - 350 - KF - ANK.A4 with $N_{Rk,s,c} = 31 \text{ kN} = \text{char.}$ resistance, steel failure (tension), connection channel anchor A4 = Carbon steel or stainless steel 1.4404 / 1.4571, 350 = Channel length [mm] with 3 anchors, KF = Foam strip filler, ANK.A4 = Anchor in stainless steel 1.4404 / 1.4571 / 1.4578,

or equivalent; deliver and install according to the manufacturer's instructions.

ROOF AND WALL

HZA CAST-IN CHANNELS, serrated The advantages at a glance

Apart from providing excellent adjustability, HALFEN Cast-in channels save considerable time during installation. The result; faster construction and therefore reduced overall costs.


HZA HALFEN Channels, cold-rolled, serrated

Safe and reliable

- > no damage to the main reinforcement
- > approved for fire-resistant structural elements
- > suitable for installation in concrete pressure and concrete tensile zones
- > hot-rolled channels, suitable for dynamic loads
- > building authority approved

Quick and economical

- > adjustable anchorage
- > bolts instead of welding
- > maximum efficiency when installing in rows
- > cost-effective installation using standard tools
- > optimized pre-planning reduces construction time
- > large range of channels types for various applications
- > user-friendly installation; no noise, dust and vibration

目記目 HZA-PS C/

HZA-PS CAST-IN CHANNELS

28

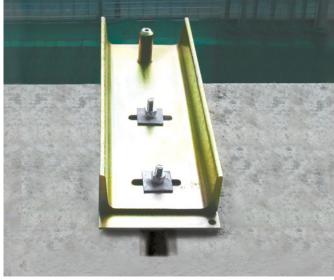
More Information on the HZA-PS is available at: www.halfen.com \triangleright Products \triangleright Fixing systems \triangleright HZA - DYNAGRIP Cast-In Channels Or scan the QR-Code and select the current "HZA-PS" catalogue.

1

2

4

3


5

7

HALFEN HZA CAST-IN CHANNELS

Application Examples: Installations with HALFEN HZA Cast-In Channels

CURTAIN WALL

Fixings of a Curtain wall façade, HZA near edge installation

INDUSTRIAL PLANT INSTALLATIONS

Pipe supports on vertical HZA Channels

LIFTS / ELEVATORS

Fixing for guide-rails

FAÇADES

Fixings for emergency access balconies (Vertical installation of HALFEN Channels)

SKI LIFT

Fixing of the drive unit for a ski lift

INDUSTRIAL BUILDING

Vertical channels in columns to attach further components

1

2

ACCESSORIES

HALFEN HZA CAST-IN CHANNELS

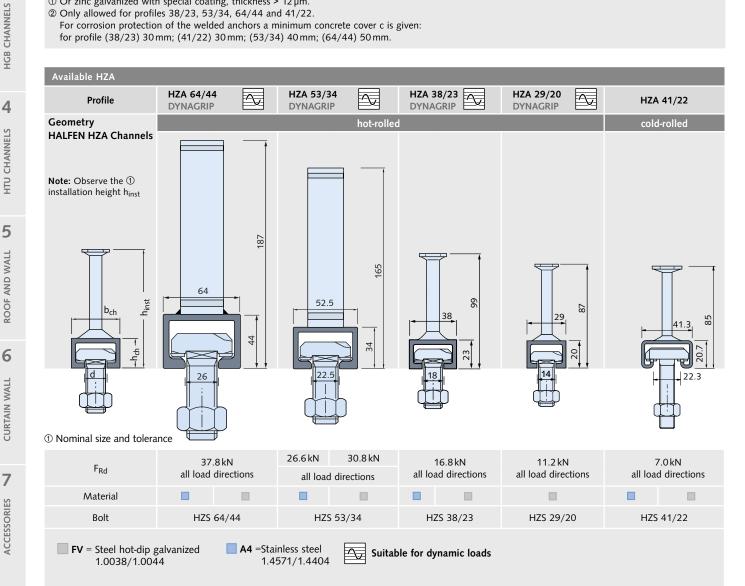
Areas of Application

2

HZA CHANNELS

3

1


Area of application	Use only possible if all fixture components are protected by a minimum concrete cover, depending on environmental conditions, as specified in DIN EN 1992-1-1:2011-01.	For interior use only, for example; in residential, office and school buildings, hospital and retail facilities, not suitable for wet rooms.	For use in building compo- nents in rooms with normal humidity (including kitchens, bathrooms, laundry rooms in residential buildings).	Building components, corrosion class III, accord- ing to EN 1993-1-4, table A.3.	
Channel profile	Mill finish	Hot-dip galvanized (thickness ≥ 50µm)	Hot-dip galvanized (thickness ≥ 50µm)	Stainless steel 1.4404/1.4571	
		List dia solvenized	Hot-dip galvanized (thickness ≥ 50µm)	Welded anchor mill finish @	
Anchor	Mill finish	Hot-dip galvanized (thickness ≥ 50µm)	Bolt anchor in stainless steel 1.4404/1.4571	Stainless steel 1.4404/1.4462 1.4571/1.4578	
Bolts, nuts, washers No corrosion protection		Zinc galvanized (thickness ≥ 5 µm) Mechanically galvanized (thickness ≥ 10 µm)	Hot-dip galvanized ① (thickness ≥ 40µm)	Stainless steel A4-50 FA-70 A4-70	

Material and area of application

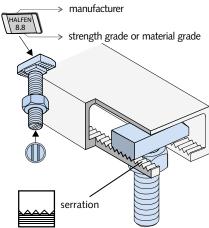
(1) Or zinc galvanized with special coating, thickness > 12 $\mu m.$

0 Only allowed for profiles 38/23, 53/34, 64/44 and 41/22.

For corrosion protection of the welded anchors a minimum concrete cover c is given: for profile (38/23) 30 mm; (41/22) 30 mm; (53/34) 40 mm; (64/44) 50 mm.

7

HALFEN HZA CAST-IN CHANNELS HALFEN HZS Bolts


Available HALFEN HZS Bolts

HALFEN Bolt, serrated

- The serration also ensures a positive load transmission in the longitudinal channel direction. The danger of bolt slippage is minimized.
- The bolt is marked on the shaft end with **2 notches**.

ALFEN HZS B	olts							_	
Suitable for profile	HZA 29/20	HZA 3	38/23	HZA	53/34	HZA	64/44	HZA 41/22	
Bolt	HZS 29/20	HZS 38/23		HZS 53/34		HZS 64/44		HZS 4	1/22
Bolts dimensions	20.9	28.8		A1.6		5. January		34.7	
Ø I [mm]	M12	M12	M16	M16	M20	M20	M24	M12	M16
30	GVs8.8	GVs8.8							
35								A4-50 FV8.8	
40	GVs8.8	GVs8.8	GVs8.8						
50	FV8.8* GVs8.8	FV8.8* GVs8.8	GVs8.8					A4-50 FV8.8	A4-50 FV8.8
60	GVs8.8	GVs8.8	A4-70 FV8.8 GVs8.8	A4-70 FV8.8* GVs8.8					
65					FV8.8* A4-70 GVs8.8				
80	GVs8.8	GVs8.8	A4-70 FV8.8* GVs8.8	FV8.8*	FV8.8*	A4-70* FV8.8* GVs8.8*	A4-70* GVs8.8*	A4-50	
100		GVs8.8	GVs8.8	A4-70 FV8.8* GVs8.8	A4-70 GVs8.8		FV8.8*		FV8.8
125						A4-70* GVs8.8*			
150			GVs8.8				A4-70* GVs8.8*		
on request									

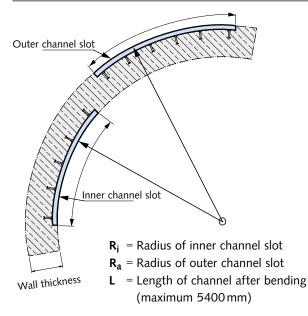
1

6

CURTAIN WALL

7

HALFEN HZA CAST-IN CHANNELS


HALFEN HZA Channels: Standard Lengths/HALFEN HZA Channels Curved Solution

HALFEN HZA Channels – Standard lengths and Anchor positions

				_							
Standard lengths	- Project related or	rders		9	Standard lengths	- Project related o	rders				
	HZA 38/23, 41/2	2, 53/34, 64/44			HZA 29/20						
	Length [mm] / Number of anchors					Length [mm] / N	umber of anchors				
1050 /5	1300 /6	1550 /7	1800 /8		1250 /7	1450 /8	1650 /9	1850 / 10			
2050 /9	2300 / 10	2550 / 11	2800 / 12		2050/11	2250 / 12	2450 / 13	2650 / 14			
3030 / 13	3300 / 14	3550 / 15	3800 / 16		2850 / 15	3030 / 16	3250 / 17	3450 / 18			
4050 / 17	4300 / 18	4550 / 19	4800 /20		3650 / 19	3850 /20	4050 /21	4250 /22			
5050 /21	5300 /22	5550 /23	5800 /24		4450 /23	4650 / 24	4850 /25	5050 /26			
					5250 / 27	5450 /28	5650 /29	5850 /30			
25 <u></u> 250	$25 \underbrace{1250}_{n \times 250} \underbrace{1250}_{250} \underbrace{250}_{250} \underbrace{250}_{250}$				25 200	200	00 200 1	200 25			

See HALFEN Price list for standard product range (short channels etc.)

HALFEN HZA Channels curved solution

Areas of application:

- tunnel construction
- · reinforced concrete tunnels for utilities
- curved walls
- sewage plants

Ordering example:

HALFEN Cast-in channel, curved HZA-CS 38/23-Q - A4, R_i = 4000 mm, L = 1050 mm

Curved HALFEN Cast-in channels in tunnel segments

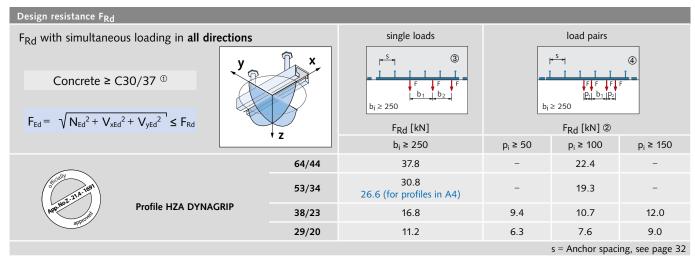
Smallest radius [m]*										
Profile	Material	HZA-CS 64/44	HZA-CS 53/34	HZA-CS 38/23	HZA-CS 29/20	HZA-CS 41/22				
Inner channel slot:		on request	on request	2.60 m	0.85 m	0.70 m				
min. R _i		on request	on request	1.20 m	-	0.70 m				
Outer channel slot:		on request	on request	1.40 m	1.10 m	2.20 m				
min. R _a		on request	on request	3.50 m	-	4.80 m				

hot-dip galvanized A4 stainless steel

* please contact our technical support for more detailed information

1

2


ROOF AND WALL

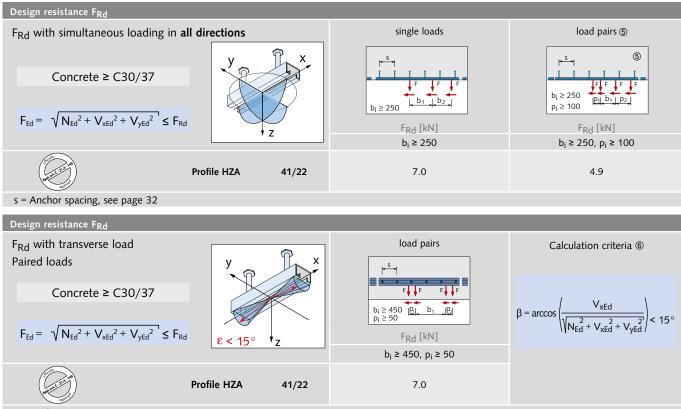
6

HALFEN HZA CAST-IN CHANNELS

Calculation

HZA DYNAGRIP Design resistance calculation value F_{Rd}

① The load spacings must be increased by a factor of 1.25 for concrete strength class C20/25, or 1.15 for concrete strength class C25/30. Alternatively the design resistances may be reduced by using the reciprocal values.


2 Interim values may be linearly interpolated.

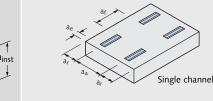
③ With loading at the end of the channel, the load distance to the next single load must be increased to $x_s (\cong b_1)$.

For HZA 53/34 and HZA $64/44 \rightarrow b_1 \ge 275$ mm, for HZA $38/23 \rightarrow b_1 \ge 265$ mm, for HZA $29/20 \rightarrow b_1 \ge 250$ mm. (4) With loading at the end of the channel, the load distance to the next load pair must be increased to $x_s (\cong b_1)$.

For HZA 53/34 and HZA 64/44 \rightarrow b₁ \geq 100 mm.

HZA Profile 41/22: Design resistance calculation value F_{Rd}

s = Anchor spacing, see page 32


⑤ With simultaneous tension and shear stress perpendicular to the channel axis and shear load parallel to the channel axis, the load resultant F_{Rd} of the load pair must not exceed 4.9 kN.

If β > 15° the design load must be reduced to 4.9 kN.

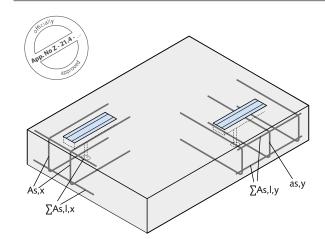
HALFEN HZA CAST-IN CHANNELS Dimensioning

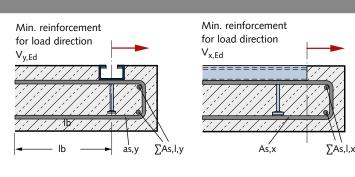
Minimum spacing a_r, a_e, a_a, a_f and h

Minimal spacing HALFEN Channel HZA [mm]

																com	ponent	size
		a _r			a _a			a _e		a	ŀf					b		
	non-reir	nforced	rein-	non-reir	nforced	rein-	non-rei	nforced	rein-	non-	rein-	a _{r1}	a _{a1}	a _{e1}	non-rei	nforced	rein-	h _{min}
	2 Anchors	> 2 Anchors	forced ④	2 Anchors	- 2	forced ④	2 Anchors	> 2 Anchors	forced ④	rein- forced	forced @	3	3	3	2 Anchors	> 2 Anchors	forced	2
HZA 64/44 [®]	345	600	250	690	1200	500	720	1000	215	450	450	-	-	-	690	1200	500	225
HZA 53/34 [®]	340	535	200	680	1070	400	700	950	165	350	350	-	-	-	680	1070	400	170
HZA 38/23 [®]	200	335	150	400	670	300	410	550	130	250	250	90	180	170	400	670	300	120
HZA 29/20 [®]	120	190	110	240	380	220	240	330	90	220	220	55	110	150	240	380	220	120
HZA 41/22 [®]	90	150	110	180	300	220	200	230	90	220	220	50	100	150	180	300	220	120

0 Minimum component width b = 2 x a_r applies to single channel configuration.


② Values are minimum values. $h_{min} ≥ h_{inst} + c_{nom}$ must always be observed.


(h_{inst} is determined by channel height and anchor length. Required concrete cover " c_{nom} " according to EN 1992-1-1 (EC2), section 4.4.1.) ③ Only for centric tensile stress. To account for cracked concrete the spacings a_{r1} and a_{r2} must be doubled or alternatively the design resistances may be reduced by a factor of 1.4 (not required for HZA 41/22).

 $\circledast\,$ Reinforcement layout, see below.

⑤ All values (non-reinforced concrete) apply to non-cracked, concrete strength class C30/37 or higher. To account for cracked concrete the spacings must be increased by a factor of 1.5. Alternatively the design resistances may be reduced by factor 1.4. Reinforced concrete is assumed as cracked. For concrete strength class C20/25 the spacings must be increased by 1.25, and for concrete strength class C25/30 by 1.15. Alternatively the design resistances may be reduced by the reciprocal values. (except for h_{min}).

Minimum reinforcement

Minimum reinfor	Minimum reinforcement									
Profile	for load direction V _{x,Ed}	for load direction V _{y,Ed}	Ø							
	A _{s,x} ®	a _{s,y} ®	∑A _{s,lx} resp. ∑A _{s,ly}							
HZA 64/44	2Ø10	Ø10/200	2Ø10							
HZA 53/34	2Ø8	Ø8/200	2Ø10							
HZA 38/23	2Ø8	Ø8/200	2Ø10							
HZA 29/20	2Ø6	Ø6/200	2Ø10							
HZA 41/22	2Ø6	Ø6/200	2Ø10							

- $\ensuremath{\textcircled{O}}$ At least one reinforcement bar installed at the edges.

⑧ Close to the anchors.

may ④ Reir ⑤ All

1

HTA-CE CHANNELS

2

HZA CHANNELS

3

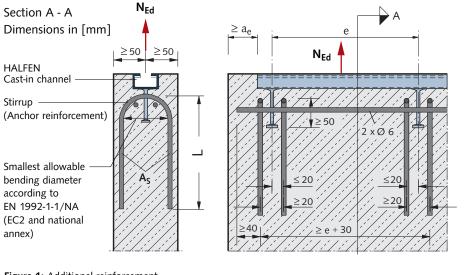
HGB CHANNELS

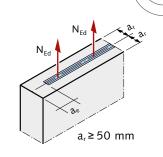
4

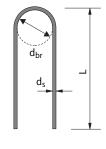
Minimum

Channel pair

HALFEN HZA CAST-IN CHANNELS


Dimensioning


Reduced edge distance a_r, with full centrical tensile stress


Preconditions for reducing the edge distance to 50 mm

Where minimum structural spacing cannot be maintained when installing HALFEN Channels, HZA 41/22, 29/20 and 38/23, for example, in thin façade

panels, the distance to the edge ar may be reduced to 50mm, if additional anchor reinforcement as shown in figure 1 is used for the anchor loads and tensile splitting.

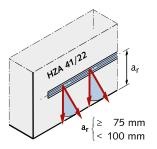

Required stirrup dimensions									
Profiles	stirrup	dimensio	ns [mm]						
Fromes	L	ds	d _{br}						
HZA 29/20, 41/22	250	6	24						
HZA 38/23	250	8	32						

Figure 1: Additional reinforcement

		Profiles	surrup	JIIIIelisioi	
		Tromes	L	ds	d _{br}
Required reinforcement cross section A _S [cm ²] stirrup rebar:	p rebar: $\sigma_{Rd} = 11.0 \text{ kN/cm}^2$		250	6	24
req. $A_s = \frac{F_{Ed} [kN]}{4 \times \sigma_{Rd} [kN/cm^2]} = \frac{F_{Ed}}{44} cm^2$	Approval no. Z-21.4-145 (HZA), Z-21.4-1691 (HZA DYNAGRIP) for this example.	HZA 38/23	250	8	32

Additional reinforcement for HZA 41/22 with edge distance ≥ 75 mm and < 100 mm

Additional reinforcement for edge distance for HALFEN Channels **HZA 41/22** from 75 mm $\leq a_r < 100$ mm and loads perpendicular to the edge (figure 2). According to approval, Z-21.4-145 annex 6.

req. A_s =
$$\frac{F_{Ed} [kN]}{\sigma_{Rd} [kN/cm^2]} = \frac{F_{Rd}}{11.2} cm^2$$

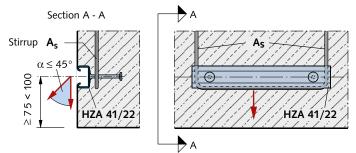


Figure 2: Additional reinforcement placement

2

3

HALFEN HZA CAST-IN CHANNELS

HALFEN Bolts: Dimensioning

HALFEN HZS Bolts – Load capacity and bending moment

Bolts type HZS — Design values	Bolts type HZS — Design values F _{Rd} and M _{Rd} ①										
æ	Grad	e 8.8	Stainless steel A4-50, HCR-50 Stainless			s steel A4-70					
		Bending moment for each bolt ②		Bending moment for each bolt ②		Bending moment for each bolt ②					
Bolt type	F _{Rd} [kN]	M _{Rd} [Nm]	F _{Rd} [kN]	M _{Rd} [Nm]	F _{Rd} [kN]	M _{Rd} [Nm]					
29/20 - M 12	27.0	83.8	-	-	-	-					
38/23 - M 12	27.0	83.8	-	-	-	-					
38/23 - M16	50.2	213.1	-	-	42.2	149.4					
41/22 - M12	27.0	83.8	10.6	27.5	-	-					
41/22 - M16	50.2	213.1	19.8	70.0	-	-					
53/34 - M16	50.2	213.1	-	-	42.2	149.4					
53/34 - M20	78.4	415.4	-	-	66.0	291.3					
64/44 - M20	78.4	415.4	-	-	66.0	291.3					
64/44 - M24	113.0	718.4	-	-	95.1	503.7					

① Observe profile load bearing capacity! If the load bearing capacity of the bolt and the HALFEN Cast-in channel differ, use the smaller of both values.
 ② Bending moment in the profile or concrete edge; see note below if bending with additional centric or diagonal tensile stress occurs.

Variable bending stress:

For façades renders subjected to variable stress conditions (e.g. due to temperature change), the alternating stress amplitude must not exceed a value of $\sigma_A = \pm 50 \text{ N/mm}^2$ (γ =1.0) with a mean value of σ_M (relative to the stressed cross section of the bolt).

$N_{Ed} \le F_{Rd} \times (1 - M_{Ed} / M_{Rd})$

- F_{Rd} = Bolt design load capacity
- M_{Rd} = Design value of possible bending moment
- N_{Ed} = Design value of actual tensile load
- M_{Ed} = Design value of actual bending moment

Note:

Combine stress values if bending occurs with additional centric or diagonal tensile stress.

Torque values for HALFEN Bolts

Torque values [Nm]									
Bolt type Material/Grade	HZS 64/44 8.8	HZS 64/44 A4-70	HZS 53/34 8.8	HZS 53/34 A4-70	HZS 41/22 8.8	HZS 41/22 A4-50	HZS 38/23 8.8	HZS 38/23 A4-70	HZS 29/20 8.8
Thread									
M12	-	-	-	-	50	50	80	-	80
M16	-	-	200	200	120	80	120	120	-
M20	350	350	350	350	-	-	-	-	-
M24	450	450	-	-	-	-	-	-	-

CURTAIN WALL

ACCESSORIES **A**

1

3

HGB CHANNELS

4

HTU CHANNELS

5

HALFEN CAST-IN CHANNELS HZA AND HTA Dynamic Loading

Dynamic loads for hot-rolled HALFEN Cast-in channels

The stress amplitudes shown here only apply to anchor channels made of the specified material and with the specified anchor types. Only the corresponding bolts according to the tables on this page are allowed.

HZA 38/23 profile - FV (standard, hot-dip galvanized),

(stress amplitude Δ F)

1 load cycle

Number of load cycles N

 N_0 = highest load

 N_{u} = lowest load

Example:

channel length = 250 mm

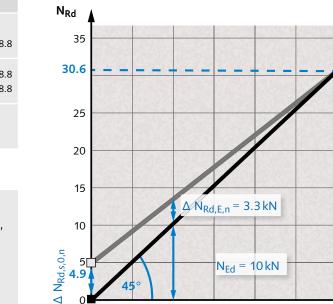
of which dynamic load: 3 kN (stress

0

Load F

16.8 kN 13.8 kN

max. load: $F_{Rd} = N_0 = 16.8 \text{ kN}$


4

6

5

ACCESSORIES **V** CURT

Diagram: HTA-CE 52/34 - FV for $n = 2 \times 10^6$ load cycles

10

5

 $N_{Ed} = 10 \, kN$

15

20

25

Allowable amplitude / HALFEN HZA Channels, serrated

Allowable stress amplitude for load cycle $n = 2 \times 10^{6}$							
Profile, anchor configuration ①	Material	Allow. stress amplitude $\Delta F = F_0 - F_u [kN]$ for tensile stress	Approved bolts				
29/20-B6, 29/20-Q	1.0044	2.0	M12				
	1.0044	3.0					
38/23-B6, 38/23-Q	1.4404/1.4571 2.4		M 16				
	1.0044	6.0/(12 ²)					
53/34-B6, 53/34-Q	1.4404/1.4571	4.0/(10 [@])	M 16, 20				
64/44-Q/L [®]	1.0044	15.0 [®]	M20 24				
	1.4404/1.4571	11.0 [®]	M20, 24				

① Anchor configuration:

B6: with bolt anchor

Q: with I-anchor welded transverse to the channel

Also see approval Z-21.4-1691

② values apply for anchor channels with weld-on anchors type I 140/7.1 with anchor orientation Q (crosswise), weld joint position L (lengthwise)

Design resistance / HALFEN HTA Channels

Design res	Design resistance for n = 2 × 10 ⁶ load cycles							
Profile HTA	Туре	$\Delta N_{Rd,s,0,n}$	Allowable bolts	Material				
40/22P	FV	2.94	M12 M16	8.8 4.6 / 8.8				
50/30P	FV	3.6	M16 M20	4.6 / 8.8 4.6 / 8.8				
52/34	FV	4.9	M16 M20	8.8 8.8				

Example (also see diagram to the right):

Profile HTA-CE 52/34 - FV (standard, hot-dip galvanized), for $n = 2 \times 10^6$ load cycles:

 N_{Rd} = 55 ÷ 1.8 = 30.6 (taken from the ETA)

 N_{Ed} from permanent load = 10 kN (assumption)

 $\Delta N_{Rd,E,n} = (30.6 - 10) \times 4.9/30.6 = 3.3 \text{ kN}$

30.6

 N_{Ed}

HGB HANDRAIL CONNECTIONS The advantages at a glance

Construction specialists consider the HALFEN HGB Handrail connections to be particularly suited for fastening railings and banisters to the thin front faces of balcony slabs

HALFEN HGB Handrail connections profile HGB E-54/33-A4

Safe and reliable

- > statically verified installation
- > no damage to visible surfaces of concrete slabs
- also suitable to secure mandatory safety rails during construction (Refer to: EN 795 "Guard rails")
- > use with HALFEN high-strength bolts to ensure a relible and statically sound connection of railing/banister components

Fast and cost-effective

- > adjustable anchorage
- > can also be used in slabs as thin as $h \ge 100 \text{ mm}$
- > installed with bolts instead of welding or drilling
- > pre-planning reduces on-site construction time
- > all attached components remain fully adjustable or are easily replaced as required

HALFEN HGB Handrail connections profile HGB E-49/30-A4

HALFEN HGB Handrail connections profile HGB E-40/25-A4

© 2019 HALFEN · B 20-E · www.halfen.com

1

2

3

4

6

CURTAIN WALL

HALFEN HGB HANDRAIL CONNECTION Application Examples

SAFETY BARRIERS IN STADIUMS

1-4: Safety barrier installation, multi purpose arena in Berlin

Fixing of safety rails, Rheinenergiestadion Cologne

RAILINGS

Used to secure safety rails during the construction phase

Fixing of safety rails, Rheinenergiestadion Cologne

Cast-in HGB Channel, residential building

1

HALFEN HGB HANDRAIL CONNECTION General

Regulatory requirements

Balconies are part of the structural system. "They must be designed, constructed, maintained and modified in such a fashion that public order and safety, especially to health or life, is not endangered". Model building code and construction guidelines (Musterbauordnung MBO 07 und Ausführungsvorschriften).

Technical guidelines issued by public notice as technical building regulations must be observed.* Technical rules provide information on load parameters, calculation, dimensioning of structural products, construction types, structural layouts etc. A requirement of regional building codes refers to structural stability: "All structures must, as a whole and in their individual components, be structurally self-supporting". This stability must be statically verifiable based on current technical standards.

A further building regulation addresses traffic loads, for example: Balconies and loggias must be fitted with safety rails to prevent falls when they border on to an area with a drop of more than one metre. For a drop height up to 12 m the minimum railing height is 0.90 m measured from the upper surface of the finished floor surface or accessible ledge. For drop heights greater than 12 m the banister height must be at least 1.10 m. For exceptions see the German federal building regulations / Deutsche LandesBauOrdnung.

Other regulations, not covered here, address the design, dimensioning, required spacings in the guard rail design, fire protection, thermal/sound insulation and rainwater drainage. *issued by the highest construction supervision authorities of the German Federal States

Regulations, standards and directives (to be observed when designing safety rails)

Regional Building Codes	§
VOB — Part B, § 4, execution of construction:	§
BVM Directive	
Other applicable regulations and standards (Extract):	§

Individual regional states have their own building codes and regulations. All current technical regulations require proof of structural safety and integrity. A static calculation or a building authority certificate is required when designing and dimensioning the fixings for guard rails.

§ 4.2 (1) It is the contractor's responsibility to provide the static documentation in accordance with the contract. He has to observe the recognized standards of practice as well as with the provisions of the law and regulatory directives. Tender and Contract Regulations for the German building industry (*VOB Vergabe- und Vertragsordnung für Bauleistungen*) Part B, § 4.3, requires the contractor to report to the customer, in writing, any obvious design flaws, which he as the expert must be able to recognize. He alone is responsible for any resulting defect and consequential expenses. If he has satisfied his reporting obligation, the responsibility for the defect passes to the customer (defect example: banister attachment mounted in a concrete slab which is too thin).

Directive on metal railings/banisters/balustrades, published by Federal Association of German Metalworkers (*BVM Berufsverband Metall*).

- Accident Prevention Regulation "General Provisions" (DGUV Regulation 1)
- Industrial Safety Regulations
- ETB Directive "Fall Prevention Installations", Publ. 1985
- Stainless Steels, EC3 part 1-4

EN 1992-1-1 (EC2):	Design and construction of concrete support structures; with
	National Annex (NA)
EN 1991 (EC1):	General effects on load structures;
	with National Annex (NA)
EN 1993 (EC3):	design and construction of steel structures;
	with National Annex (NA)

1

2

ROOF AND WALLS **G**

CURTAIN WALL 9

7

HALFEN HGB HANDRAIL CONNECTION Materials/Corrosion Protection

Stainless Steel A4:

Chromium is the most important alloy element in stainless steel. A specific chromium concentration ensures the generation of a passive layer on the surface of the steel that protects the base material against corrosion. This explains the high corrosion resistance of stainless steel.

HALEEN Cast in channels, stainlass staal

"Anchor channels in stainless steel may be used outdoors – also in an industrial and coastal environment, but may not be directly exposed to salt water".

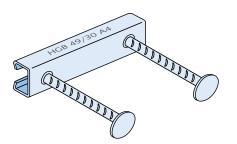
See guidelines for "Metal railings, banisters and balustrades" issued by the German Association of Metalworkers (*BVM Bundesverband der Metallverarbeiter*).

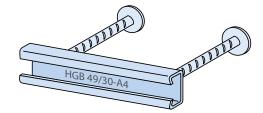
		Description		Stainless steel		
			Materials	Standard	Corrosion resistance class according to EN 1993-1-4, table A.3	
	Channel profile	1.4404 or 1.4571	EN 10 088	Ш		
	Ribbed-head anchor	Reinforcing steel B500B	DIN 488			
HALFEN Bolts, stainless s	steel					
		Description	Stainless steel			
			Materials	Standard	Corrosion resistance class	
	P				according to EN 1993-1-4, table A.3	
		Bolt	A4-70: 1.4404 or 1.4571	EN 3506-1 and EN 10 088		
		Bolt Hexagonal nut			EN 1993-1-4, table A.3	
		Hexagonal	1.4404 or 1.4571	EN 10 088 EN 3506-2 and	EN 1993-1-4, table A.3	

□ WB = Steel mill finish

A4 = Stainless steel

Galvanized:

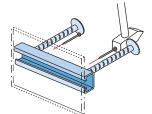

Dipped in a galvanizing bath at a temperature of approximately 460°C, a method used primarily for open-profile channels.



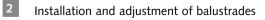
Galvanized material for interior, dry rooms, for instance when installing staircase railings and banisters in residential buildings, schools or commercial retail stores.

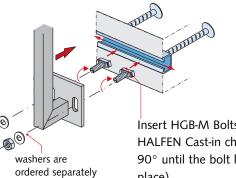
Available on request

Identification of HALFEN HGB Cast-in channels

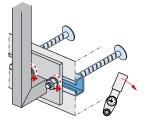

Product identification

> on channel side


> additionally inside the profile

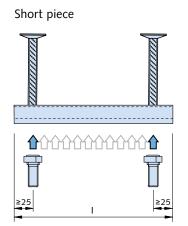

HALFEN HGB HANDRAIL CONNECTION Installation/Assembly

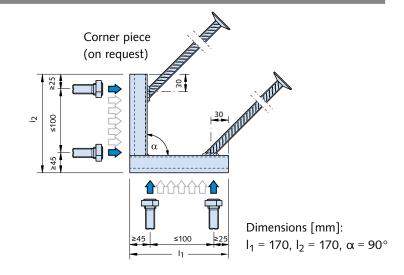
1 Nail the HALFEN Cast-in channel to the formwork


Where possible, use stainless steel nails to avoid corrosion. After striking the formwork remove the foam filler from the HALFEN Cast-in channels.

Insert HGB-M Bolts into the HALFEN Cast-in channel (turn 90° until the bolt locks into place).

3 Tighten the bolts


Tighten the nuts using a torque wrench. See table on the right for torque values



Nail the HALFEN Cast-in channel to the formwork

Railing bolts			
Stainless steel Material grade A4-70	Torque [Nm]		
HS 50/30		M16	60
for profile 49/30 and 54/33		M12	25
HS 40/22		M16	45
for profile 40/25		M12	25
HS 38/17	8	M16	40
for profile 38/17		M12	25

Fixing position of the bolts

B0

1

HTA-CE CHANNELS

2

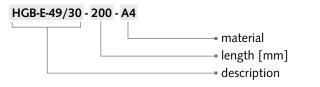
6

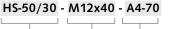
CURTAIN WALL

HALFEN HGB HANDRAIL CONNECTION

Product Range

HALFEN HGB Cast-in channels and bolts										
Item description	Dimensions HGB-E [mm]			Dimensions HGB-EE [mm]			HALFEN HGB Bolts			
Ide	d _A		Total Contraction		O onto					
	I	d _A	h _A	Weight kg/each G	l ₁ / l ₂	d _A	h _A	Weight kg/each G	Type / FK	Dimensions
HGB E - 54/33-A4 ■	100 150			1.071 1.307					HS-50/30	M12×40
	200	14	200	1.543	170/170	14	250	2.262	A4-70	M16×50
HGB E - 49/30-A4	100			0.704						
B500B (BSt 500 S)	150	12	110	0.855	170/170	14	150	1.501	HS-50/30 A4-70	M12×40
	200			1.007						M16×50
HGB E - 40/25-A4	100			0.611						
B500B (BSt 500 S)	150	10	90	0.717	170/170	14	90	1.042	HS-40/22	M12×40
4 W	200			0.822					A4-70	M16×40
HGB E - 38/17-A4	100			0.824						
+ 17 B500B/A NR (BSt 500 NR)	150	10		0.911	170/170		224	1011	HS-38/17	M12×40
	200	10	201	0.999	170/170	12	201	1.214	A4-70	M16×40


A4=Stainless steel 1.4571/1.4404


Alternative for interior use (on request) **FV**=Steel hot-dip galvanized 1.0038/1.0044

Ordering and materials

Ordering example HGB channel:

→ material → thread-Ø × length → description HZA CHANNELS

3

HGB CHANNELS

4

HTU CHANNELS

ROOF AND WALLS G

HALFEN HGB HANDRAIL CONNECTION Dimensioning Fundamentals

Railing height

1

HTA-CE CHANNELS

2

HZA CHANNELS

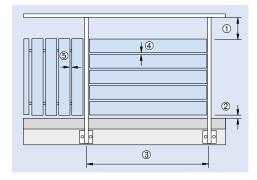
3

HGB CHANNELS

The minimum height h_b of a railing is 0.90m from the top surface of the finished floor or accessible ledge to the upper edge of the rail. For drop heights of more than 12.0m the railing must be at least 1.10m in height. (Exceptions; as specified in regional building codes)

It would be advisable to have one uniform minimum height of 1.00 m as has already been mandated in the commercial sector and in a number of European countries.

Balcony slab


Anchor channels or dowel installations require concrete of at least C 20/25 grade. A case-by-case decision must be made if the concrete grade is less than C 20/25 grade or is unknown.

The thickness of the balcony slab must be at least h = 100-150 mmwhen the HGB is cast in the slab edge (depends on channel profile and according to the German HGB approval). Other types of installation and systems require a thicker slab. All weather-exposed concrete-embedded installations (e.g. for balconies) must be made of stainless steel.

OK FF

b = clear distance between the back of the balcony cladding and the front face of the balcony slab or gutter/kick plate

Any structural design must take all basic requirements for railings and banisters into account. As a general rule, all railings and banisters must be designed so that personal injury is ruled out, for instance with correct spacing of rails, lattice bars or panels. They should also be designed so as not to entice but instead to discourage anyone from climbing over. The specific requirements for guard rail design are determined by the intended use (residential, public, commercial) and the drop height involved. Also observe the building codes of each country or region, the ETB guide-lines "Fall Protection Components" and DIN 18065 (Stairs in Buildings – definition, rules, key measurements) and guard rail regulation applicable at the construction site. In Germany these are the Guardrail regulations 2012 set by the German Association of Metalworkers, (*"Geländer-Richtlinie 2012, BVM Berufsverband Metall"*).

- ① clear distance between bottom edge of hand rail and top edge of facing / lower structure
- ② clear distance between the top edge of the finished floor and the bottom edge of the facing lower structure
- ③ axis spacing between posts
- ④ clear distance between horizontal facings
- ⑤ clear distance between vertical facings

ACCESSORIES

Dimensions

The forces acting on the railing must be transferred into the main building structure. It is necessary to verify that the forces

- a) are wholly supported by the railing and
- b) can be transferred via the connecting elements into the balcony slab.

$$N_{Ed} = \frac{M_{Ed}}{(e - 0.41 \cdot x)} + H_{Ed}$$

 N_{Ed} = tensile force on the anchor

- e = distance between channel axis and outer edge of the railing base plate
- x = maximum concrete pressure zone level according to annex 8, table 8a and 8b

Drop height	Minimum height of rails (recommended)	Note
Less than 12 m	90 cm (100 cm)	Relevant regional building regulations and if necessary other regulations e.g.
Greater than 12 m	110 cm	for civil constructions must be observed.

Calculation

 Railing/banister load h according to EN 1991-1-1/NA Table 6.12 DE
 "Calculation must assume 100% traffic load in drop direction and 50% of traffic load (but not less than 0.5 kN/m) in the opposite direction."

2. Vertical loads v according to BVM guidelines

Load assumptions to calculate vertical loads are according to the BVM guidelines for guard rails/banisters.

3. Wind loads $F_{\rm w}$ according to EN 1991-1-4 and EN 1991-1-4/NA

for example: residential buildings and communal areas with low foot traffic	q _k = 0.5 kN/m
for example: rooms for mass assembly, commercial sales spaces, corridors	q _k = 1.0 kN/m
for example: areas for large gatherings of people, factories, workshops	q _k = 2.0 kN/m

N_{Ed}

MEd

(e-0.41 x)

 V_{Ed}

(e-0,41)

from dead weight of structure including any renders	$v_1 = 0.40 kN/m$
from window box	$v_2 = 0.35 kN/m$
support capacity	$v_3 = 0.15 kN/m$

Velocity force q in kN/m^2 and and total wind pressure F_w are calculated according to EN 1991-1-4 with EN 1991-1-4/NA.

1

4

6

CURTAIN WALL

Extract from HGB approval Z-21.4-1912, page 6

3.2.2 Actions and required verifications

The actions H_{Ed} , V_{Ed} , M_{Ed} and N_{Ed} have to be determined according to the calculation basics as in annex 7. The ratio in the design calculation between horizontal action and bending moment is limited to:

 $\frac{H_{Ed}}{M_{Ed}} \le 1.5 [1/m] \qquad H_{Ed} [kN]; M_{Ed} \text{ in } [kNm]$

It has to be verified that the design action value E_d does not exceed the design resistance value R_d :

 $\begin{array}{ll} \mathsf{E}_d \leq \mathsf{R}_d & \text{ see table 3.1 and 3.2 below} \\ \mathsf{E}_d & = \text{Design action value } (\mathsf{N}_{\mathsf{Ed}}, \, \mathsf{V}_{\mathsf{Ed}}, \, \mathsf{M}_{\mathsf{Ed}}) \\ \mathsf{R}_d & = \text{Design resistance value } (\mathsf{N}_{\mathsf{Rd}}, \, \mathsf{V}_{\mathsf{Rd}}, \, \mathsf{M}_{\mathsf{Rd}}) \end{array}$

For a standard case the following equation for the design action value applies (permanent load and variable load acting in the same direction):

 $\begin{array}{ll} \mathsf{E}_{d} &= \gamma_{G} \cdot G_{k} + \gamma_{Q} \cdot Q_{k} \\ \mathsf{G}_{k;} \, Q_{k} &= \text{characteristic value of permanent load or variable load according to} \\ & \text{recoqnized standards for load assumptions} \\ \gamma_{G;} \, \gamma_{Q} &= \text{partial safety factors for permanent and variable action} \end{array}$

Extract from HGB approval no. Z-21.4-1912, page 7

 Table 3.1 Required verifications for tensile loads

 Steel failure

 Pull out failure

 Concrete failure with anchor reinforcement

 Spalling

Table 3.2 Required verifications for shear loads	
Steel failure	$V_{Ed} \leq V_{Rd,s}$
Concrete failure with anchor reinforcement	 ≤ V_{Rd,s,s} (for single-bolt fixing) ≤ 2 V_{Rd,s,s} (for two-bolt fixing)
Concrete edge failure with anchor	$V_{Ed} \le V_{Rd,c}$
reinforcement	$M_{\rm Ed} \leq M_{\rm Rd,c}$

With combined loads the following interactions must be verified:

1. max. $(N_{Ed} / N_{Rd,s})^2 + max. (V_{Ed} / V_{Rd,s})^2 \le 1.0$ or

max. (N_{Ed} / $N_{Rd,s}$) + max. (V_{Ed} / $V_{Rd,s}$) \leq 1.2

2.
$$M_{Ed}$$
 / $M_{Rd,c}$ + 1.5 V_{Ed} / $V_{Rd,c}$ ≤ 1.5

2

1

HGB CHANNELS

5

7

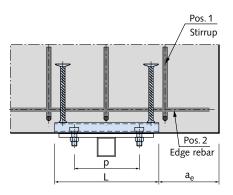
Extract from HGB-approval no. Z-21.4-1912, annex 6

Table 6: Installation and anchor parameters									
			Anchor cha	nnels profiles					
Description	Illustration	38/17	40/22 40/25	50/30 49/30	52/34 54/33				
A) Profile shape and bolt positioning									
Minimum channel length requi- red for a two-bolt fixing [mm]	annex 2	150	150	150	150				
Minimum bolt distance p [mm]	see next page	80	80	80 (100) ①	80 (100) ①				
B) Building element dimensions ar	nd anchor position in the ele	ment							
Minimum thickness of concrete element h [mm]	annex 8	100	120	140	150				
Minimum edge distance c ₁ [mm] (channel axis to the upper and the lower edge of the concrete element)	annex 8	50	60	70	75				
Minimum distance a _e [mm] to edge of concrete element (from end of channel)	see next page	40	45	50	50				
C) Size and position of anchor pla	ite								
Minimum distance e [mm] from the channel axis to the upper and the lower edge of the anchor plate		30	30	35	37.5				
Minimum distance a_1 [mm] from the upper and lower edge of the anchor plate to the upper and lower edge of the concrete element $@$		10	10	10	10				
Minimum distance a_2 [mm] from the outer edge of the anchor plate to the edge of the concrete element		40	45	45	45				

0 The values in brackets apply when using M20 bolts 0 In components with a weather groove, the bottom of the groove is regarded as the concrete element edge

Extract; HGB approval no. Z-21.4-1912, annex 6

Table 7: Size and position of required minimum reinforcement


Description	Anchor channels					
Description	38/17	40/25	49/30	54/33		
Stirrup / Quantity	3 Ø 8 I _b = 200 mm	3 Ø 8 I _b = 250 mm	3 Ø 10 I _b = 300 mm	3 Ø 12 I _b = 400 mm		
Edge rebar, top and bottom [mm]	Ø 8	Ø 8	Ø 10	Ø 12		

1

HTA-CE CHANNELS

Required minimum reinforcement:

One stirrup is placed centrally between the channel anchors and one stirrup directly next to each anchor at the channel ends (if positioned near to the edge, between the anchor and component edge).

Extract; HGB approval no. Z-21.4-1912, annex 8

Table 9: Design resistance for each bolt								
	Tensile							
Bolts Ø M12 M16 M20								
	4.6	16.9	31.4	49.0				
	8.8	44.9	83.7	130.7				
N _{Rd,s,s} [kN]	A4-, HC-50	14.8	27.4	42.8				
	A4-70*	31.6	58.8	91.7				
Shear								
	4.6	12.1	22.6	35.2				
V _{Rd,s,s} [kN]	8.8	27.0	50.2	78.4				
	A4-, HC-50	10.6	19.8	30.9				
	A4-70*	22.7	42.2	66.0				

* Values also apply for all stainless steels of strength class 70 (see also HGB approval, annex 4)

Design resistance of concrete pressure zone

$$M_{Rd,c} = 0.81 \cdot x \cdot b \cdot \frac{f_{ck}}{\gamma_{Mc}} \cdot (e - 0.41 \cdot x)$$

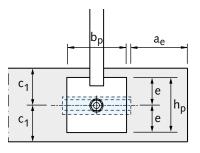
where:

x = maximum height; concrete pressure zone (see table 8a and 8b)

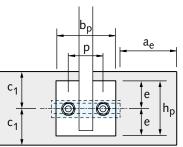
 $b = width of pressure zone = width of anchor plate <math>b_p$

- e = distance between anchor channel axis and outer edge of the anchor plate (see illustration on page 47, table 6)
- γ_{Mc} = 1.5 (partial safety factor)

Extract, HGB-approval no. Z-21.4-1912, annex 8


Table 8b: Design res

V_{Rd,c} [kN]


Maximum height of

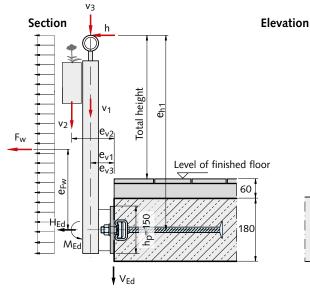
concrete pressure zone x

Table 8a: Design resistance of the channel using single-bolt fixing							
Channel type		38/17	40/25	49/30	54/33		
	thickness of nt h [mm]	100	120	140	150		
Steel failure (single-bolt fixing)							
Tension	N _{Rd,s} [kN]	10.0	11.1	17.2	30.6		
Shear	V _{Rd,s} [kN]	10.0	11.1	17.2	30.6		
	Concrete failure (single-bolt fixing)						
V _{Rd,c} [kN] 6.7 9.0 11.7 12.					12.7		
	n height of essure zone x	0.25 · e ^①	0.25 · e ^①	0.30 · e ^①	0.40 · e ^①		

able 8b: D	esign resista	nce of the channel ι	ising a two-bolt fixir	ıg		
Profile 38/17		40/25	49/30	54/33		
	thickness of nt h [mm]	100	120	140	150	
Steel failure (two-bolt fixing)						
Tension	N _{Rd,s} [kN]	15.0	16.7	25.8	45.8	
Shear	V _{Rd,s} [kN]	15.0	16.7	25.8	45.8	
		Concrete	e failure (two-bolt fixi	ing)		

O e = distance between the anchor channel axis and outer edges of the anchor plate. For asymmetrical anchor plates the smallest distance to the outer edge of the anchor plate is used for calculation.

9.0

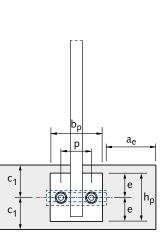

0.25 · e ^①

Dimensioning example HALFEN HGB Guard rail fittings

6.7

0.25 · e ^①

M _{Ed}	 used to calculate applicable moment relative to the channel axis
e _{V1} , e _{V2} ,	= distance of the vertical loads to
e _{V3}	the front edge of the channel
e _{h1} , e _{Fw}	= distance of the horizontal loads to the front edge of the channel
H _{Ed}	= used to calculate the
· ·Lu	applicable horizontal effect
V_{Ed}	= used to calculate the
	applicable vertical effect
h, F _w	= horizontal load effects
v ₁ , v ₂ , v ₃	= vertical load effects
b _p , h _p	= anchor plate width and height



11.7

0.30 · e ^①

12.7

 $0.40 \, \cdot e^{\, \textcircled{}}$

3

4

CURTAIN WALL

HALFEN HGB HANDRAIL CONNECTION **Dimensioning/Calculation Example**

Calculation example

Post spacing	1.5 m
Post height from FFL	1.0 m
Structure height	9.0 m < 25.0 m
Railing/banister load	0.5 kN/m (residential buildings)
Concrete slab thickness	180 mm

Distance of channel axis to component edge	c ₁ = 90 mm
Width of railing/banister anchor plate	b _p = 150 mm
Height of railing/banister anchor plate	h _p = 150 mm

Bolt spacing Concrete strength

 $p = 80 \, \text{mm}$ C30/37

Load

Vertical loads:

Dead load, railing/banister including siding	$v_1 = 0.40 \text{kN/m}$
Dead load, flower box	$v_2 = 0.35 kN/m$
Vertical traffic load on the railing/banister	$v_3 = 0.15 kN/m$

Horizontal loads:

 $h = 0.50 \, kN/m$ Railing/banister load Wind force $q = 0.50 \, kN/m^2$ (according to EN 1991-1-4 NA.B.3) (assumption: building height 9.0 m < 10:0 m, not prone to resonance frequency, inland wind zone 1)

Cantilevers:

$$e_{h1} = 1.0 + 0.06 + \frac{0.18}{2} = 1.15 \text{ m}$$

$$e_{Fw} = \frac{(1.15 + 0.075)}{2} - 0.075 = 0.53 \text{ m}$$

$$e_{v1} = 0.10 \text{ m}$$

$$e_{v2} = 0.20 \text{ m}$$

 e_{v2} $e_{v3} = 0.10 \, \text{m}$

Wind load bearing zone:

A = $(1.00 + 0.06 + \frac{0.18}{2} + \frac{0.15}{2}) \cdot 1.5 = 1.84 \text{ m}^2$

External pressure coefficient (acc. to table 7.1 EN 1991-1-4): h/d = 1, area B

= -1.1 (wind-suction) c_{pe,1} = -0.8 (wind-suction) C_{pe,10} according to EN 1991-1-4 chapter 7.2.1 the following is valid: $1 \text{ m}^2 < A \le 10 \text{ m}^2$ $c_{pe} = c_{pe,1} + (c_{pe,10} - c_{pe,1}) \cdot Ig A =$ $-1.1 + (-0.8 + 1.1) \cdot \text{lg } 1.84 = -1.02$

Wind suction: $F_w = c_{pe} \cdot q \cdot A = -1.02 \cdot 0.50 \cdot 1.84 = -0.94 \text{ kN}$ Action per support: Wind load $F_{w.Ed} = -0.94 \cdot 1.5 = -1.41 \text{ kN}$ (suction) with $\gamma_F = 1.5$ $H_{Ed} = 0.5 \cdot 1.5 \cdot 1.5 = 1.13 \, \text{kN}$ Railing/banister with $\gamma_F = 1.5$ Dead load $V_{1Ed} = 0.40 \cdot 1.5 \cdot 1.35 = 0.81 \text{ kN}$ railing/banister with $\gamma_F = 1.35$ Load from $V_{2Ed} = 0.35 \cdot 1.5 \cdot 1.35 = 0.71 \, \text{kN}$ flower box with $\gamma_F = 1.35$ Vertical load on $V_{3Ed} = 0.15 \cdot 1.5 \cdot 1.5 = 0.34 \text{ kN}$ railing/banister with $\gamma_F = 1.5$

Determining bearing reactions H_{Ed}, V_{Ed} and M_{Ed}

Not classed as an utility (escape-route) balcony therefore combination with wind load is not required.

Load case 1: V + railing/banister load

 $M_{Ed} = 0.81 \cdot 0.10 + 0.71 \cdot 0.20 + 0.34 \cdot 0.10 + 1.13 \cdot 1.15$ = 1.56 kNm V_{Ed} = 0.81 + 0.71 + 0.34 = **1.86 kN** = 1.13 kN H_{Ed}

Load case 2: V + wind

 $= 0.81 \cdot 0.10 + 0.71 \cdot 0.20 + 1.41 \cdot 0.53 = 0.97 \text{ kNm}$ M_{Ed} = 0.81 + 0.71 = **1.52 kN** V_{Ed} H_{Ed} = 1.41 kN

Selected:

HGB-E 49/30, I = 200 mm, A4 stainless steel Bolt spacing p = 80 mm 2 bolts HS 50/30 M12, A4-70, **Required minimum reinforcement:** Stirrups 3 Ø 10, $I_b = 300 \text{ mm}$ (see page 48 approval extract→ annex 6, table 7), Edge rebar 2 Ø 10

Splitting the moment into a load pair

 $N_{Ed} = \frac{M_{Ed}}{(e - 0.41 \cdot x)} + H_{Ed}$ $e = \frac{h_p}{2} = 75 \text{ mm}$ (see approval no. Z-21.4.1912 annex 7)

 $x = 0.30 \cdot e = 0.30 \cdot 75 = 22.5 \,mm$ see page 49 (approval extract \rightarrow annex 8/table 8b) $e - 0.41 \cdot x = 75 - 0.41 \cdot 22.5 = 65.8 \, mm$

1

3

2

HTU CHANNELS

5

ROOF AND WALLS

6

CURTAIN WALL

7

HZA CHANNELS

5

4

HALFEN HGB HANDRAIL CONNECTION

Calculation Example

Load case 1: V + railing/banister load

 $N_{Ed} = \frac{1.56 \text{ kNm}}{0.0658 \text{ m}} + 1.13 \text{ kN} = 24.84 \text{ kN} \rightarrow \text{decisive}$

 $V_{Ed} = \textbf{1.86 kN} \rightarrow \textbf{decisive}$

Load case 2: V + wind

 $N_{Ed} = \frac{0.98 \, kNm}{0.0658 \, m} + 1.41 \, kN = 16.30 \, kN$

 $V_{Ed} = 1.52 \, kN$

Verifications

Geometrical boundry conditions according to approval Z-21.4-1912 annex 6, table 6 have been met.

Verification of steel capacity

Design resistance (steel) channel HGB 49/30 using 2 bolt fixing

$$\label{eq:NRd,s} \begin{split} N_{Rd,s} &= 25.8 \, \text{kN} & \text{see page 48 (approval extract} \rightarrow \\ V_{Rd,s} &= 25.8 \, \text{kN} & \text{annex 8, table 8b)} \end{split}$$

Channel, centric pull load

 $\frac{N_{Ed}}{N_{Rd,s}} = \frac{24.84}{25.8} = 0.96 < 1$

Channel, shear load

 $\frac{V_{Ed}}{V_{Rd,s}} = \frac{1.86}{25.8} = 0.07 < 1$

Channel, interaction

$$\left(\frac{N_{Ed}}{N_{Rd,s}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd,s}}\right)^2 = \left(\frac{24.84}{25.8}\right)^2 + \left(\frac{1.86}{25.8}\right)^2$$
$$= 0.93 + 0.01 = 0.94 < 1$$

Bolt, centric pull load

 $\frac{0.5 \cdot N_{Ed}}{N_{Rd,s,s}} = \frac{0.5 \cdot 24.84}{31.6} = 0.39 < 1$

Bolt, shear load

$$\frac{0.5 \cdot V_{Ed}}{V_{Rd,s,s}} = \frac{0.5 \cdot 1.86}{22.7} = 0.04 < 1$$

Bolt, interaction

$$\left(\frac{0.5 \cdot N_{Ed}}{N_{Rd,s,s}}\right)^2 + \left(\frac{0.5 \cdot V_{Ed}}{V_{Rd,s,s}}\right)^2 = 0.39^2 + 0.04^2 = 0.15 < 1$$

Verification of concrete capacity

Design resistance concrete $V_{Rd,c} = 11.7 \text{ kN}$ see page 49 (annex 8, table 8b) $M_{Rd,c} = 0.81 \cdot x \cdot b \cdot \frac{f_{ck}}{\gamma_{Mc}} \cdot (e - 0.41 \cdot x)$

 $M_{Rd,c} = 0.81 \cdot 22.5 \cdot 150 \cdot \frac{30}{1.5} \cdot 65.8 = 3597615$ Nmm

Concrete edge failure

$$\frac{V_{Ed}}{V_{Rd,c}} = \frac{1.86}{11.7} = 0.16 < 1$$

 $\frac{M_{Ed}}{M_{Rd,c}} = \frac{1.56}{3.60} = 0.43 < 1$

 $\frac{V_{Ed}}{V_{Rd,c}} = 0.16 < 0.333 \rightarrow \text{According to the approval verification of interaction is not}$ required, see page 46 (approval extract/page 7).

Verifying the ratio between horizontal action and bending moment

 $\frac{H_{Ed}}{M_{Ed}} = \frac{1.13 \text{ kN}}{1.56 \text{ kNm}} = 0.72 < 1.5$

→ Design model is applicable see page 46 (approval extract/page 6)

HZA CHANNELS

2

HALFEN HTU CAST-IN CHANNEL FOR FIXING PROFILED METAL SHEETING The benefits at a glance

The HALFEN HTU Cast-in channel is ideal for fixing all types of profiled sheeting - easy and simple with self-tapping screws. Suitable for both shear loads and tension loads.

HALFEN HTU Cast-in channel for fixing profiled metal sheeting

Fixing of trapezoidal metal sheeting roof element

Façade fixed using HALFEN HTU Cast-in channels (Cologne Bonn Airport)

Thanks to the innovative channel design with its corrugated sides and filler, the new generation of HALFEN HTU Cast-in channel is installed entirely in the required concrete cover. This avoids any problem with the required reinforcement.

Safe and reliable

- > innovative geometry and corrugated edging ensure reliable anchorage
- > polystyrene filler prevents the drill-bit or self-tapping screw from hitting concrete
- > building authority approved
- > the type stamp on the channel back ensures identification after installation

Efficient and economical

- > simple installation in the required concrete cover
- > one channel type irrespective of the reinforcement layout
- > simple installation in the precast plant

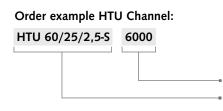
Vertical HALFEN HTU Cast-in channels for fixing façade panels

HALFEN HTU Cast-in channels in a pre-stressed concrete beam

HALFEN HTU CAST-IN CHANNELS General/product range

The HALFEN Cast-in channel for fixing trapezoidal metal sheeting has a U-shaped cross-section with the sides angled outwards. The corrugated sides of the channel provide a positive-lock with the concrete.

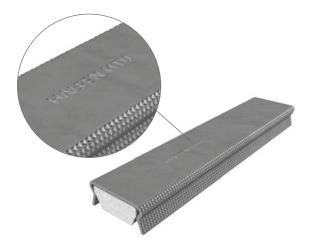
Both HTU Channel lengths (60 and 100mm) allow various bolt fixing and layout options. The HALFEN HTU Cast-in channels are building authority approved. Approval: DIBt no. Z-21.4-2096



Fixing trapezoidal sheet metal using self-tapping screws

Area of application	Fixing of trapezoidal sheeting or wall-cladding elements using building authority or ETA approved self-tapping screws. Installed flush with the surface of precast concrete elements; concrete strength C25/30 up to C50/60, cracked or non-cracked.
Materials/corrosion protection	HTU Channel made of zinc-plated steel may be installed in environments of C1 to C3 corrosion category acc. to EN ISO 12944-2:2018-04.

Available lengths:


HTU-Channels are available in 3000 or 6000 mm lengths.

length [mm] product name

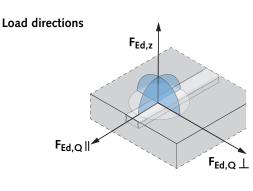
Identification

Original HALFEN Cast-in channels for fixing trapezoidal metal sheeting can be identified by the stamp on the back of the channel displaying the company name and the product description `HALFEN HTU'.

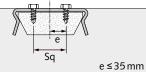
Detailed installation instructions for the self anchoring HALFEN HTU Channel can be found at: www.halfen.com \triangleright Brochures \triangleright Installation Instructions \triangleright Fixing systems

1

3


6


5


HALFEN HTU CAST-IN CHANNELS Dimensioning

Anchorages must to be planned in accordance with engineering standards. Verification of direct local force transmission from the channel into the concrete has been provided if the approved values are complied with. Connecting accessories must be verified separately. Technical design must comply with building authority approval no. Z-21.4-2096.

Constructive boundary conditions

Minimum element dimensions, bolt spacings and load resistances for concrete strength class C30/37 to C50/60 $^{\odot 3}$

Channel [mm]	(E) Single (D) Double	b _{min}	h _{min}	C _{1,min}	C _{2,min}	s _{min}	F _{Rd} ^{① ② ③}	
	fixing	[mm]	[mm]	[mm]	[mm]	[mm]	[kN]	
	150	E	2 x c1 20		200 90	75	150	3,6
HTU 60/25/2,5-S	250	E		2 x c1 200		125	250	4,9
	310	E				155	310	5,7
	150	E				75	150	2,4
	150	D						4,2
HTU 100/25/3-S	250	E	2 x c1 200	200	200 120	120 125	250	3,5
HTU 100/25/3-3	250	D	2 X C I	200 120	120			6,0
	310	E				155	310	4,2
	D D	D					510	7,1

e_{max} ≤ 16 mm

 \odot Resistance F_{Rd} applies for all load directions. The constant-load factor must be $\leq 0.15 F_{Rd}$.

② For concrete strength class C20/25 the resistances must be reduced with factor 0.82. For concrete strength C25/30 with factor 0.91.

③ For concrete strength class ≥ C30/37 the resistance F_{Rd} may be increased by Ψ c acc. to (appendix 5, table 2)

5

ROOF AND WALLS

6

1

HTA-CE CHANNELS

2

HZA CHANNELS

3

HGB CHANNELS

ROOF AND WALLS

The right solution for each application

The efficient and established installation systems for timber roof structures, masonry restraints and connectors for concrete façades are proven practical solutions for the construction industry, greatly improving construction time with significant cost-saving.

Suitable for horizontal forces acting on rafter and collar beam roofs.

HALFEN HNA Timber fixing strap

Suitable for all acting loads e.g. wind loads in roof structures.

For connection of tension and compression loads from concrete walls elements.

Suitable for horizontal loads in concrete wall elements (loads perpendicular to the bracket).

HALFEN ML and BL Brick tie anchor system

For connection of brickwork to concrete walls and columns or steel elements.

HALFEN HKW Corner guard

Wall and column corner protector; application in industry and multi-storey car parks.

3

1

HTA-CE CHANNELS

ROOF AND WALLS Application Examples

HALFEN HSF Rafter shoe 6/12

Airbus paintshop with HALFEN HVL Restraint tie

HALFEN HKZ Restraint tie with serrated washer

HVL-System in precast building components

Connecting construction timbers to concrete using HALFEN HNA

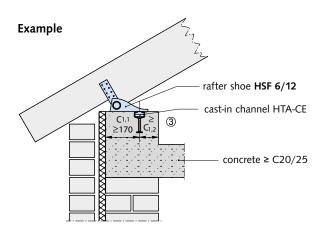
Corner guards in an industrial environment

Timber roof construction with HALFEN HNA Fixing straps

HALFEN ML Brick-tie anchor system

1

HTA-CE CHANNELS


2

HZA CHANNELS

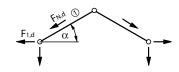
3

ROOF AND WALLS HALFEN HSF Rafter Shoe

Design values F _{Rd}							
Load F _{Rd}	Required HALFEN Cast-in channel	Min. edge distance ②	Required HALFEN Bolt				
[kN/Rafter]	Туре	C _{1,2} [mm]	Type dimensions				
12.6	HTA-CE 38/17	75	HS 38/17 - M16 × 40				
16.8	HTA-CE 40/22 P HTA-CE 40/25	100	HS 40/22 - M16 × 50				
19.6	HTA-CE 50/30P HTA-CE 49/30	150	HS 50/30 - M16 × 50				

In modern wood constructions, HSF 6/12 rafter shoes are used to support the horizontal forces in rafter and collar tie roofs.

The advantages at a glance:


- > minimal planning; simply specify the profile and position of the HALFEN Cast-in channels in the concrete element
- > clearly defined statics with flexible rafter shoes
- complex and therefore costly support structures are not necessary
- > simple and straightforward roof construction:
 - a) adjustable support plate
 - b) adjustable nailing brackets for vertical anchorage for various rafter widths from 60 to 120 m
 - c) adjustable in longitudinal rafter axis \pm 15 mm
- > freely adjustable rafter spacings in the longitudinal axis of the HALFEN Channel without additional measures
- > hot-dip galvanized for excellent corrosion protection

The horizontal forces are transferred into the main concrete structure using (ETA) European Technical approved HALFEN HTA-CE Cast-in channels.

During assembly ensure that the serration in the counter plates engages in the base plate. The marking on the counter plates must be at right angles to the slot in the base plate.

Rafter roof static system:

 $F_{1,d} < F_{Rd}$

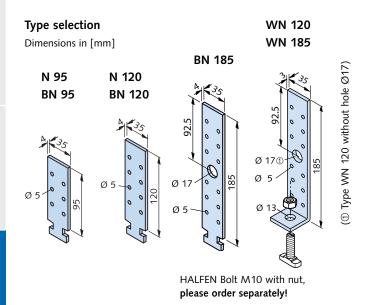
① The maximum rafter strength is limited by the design load of each individual component in the rafter shoe. Load tests resulted in a mean breaking load of 50 kN. With normal loads larger than the recommended load capacity (= about $\frac{1}{3}$ of the breaking load), the rafter spacing will need to be reduced.

② If lower loads are present, then the minimum edge distance C_{1,2} for the HALFEN Cast-in channels can be reduced. The distance to the concrete edge must be at least 170 mm.

③ Make sure that the HALFEN Cast-in channels are installed flush with the concrete surface. Use spacers if necessary.

C HTA-CE CHANNELS

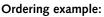
1


6

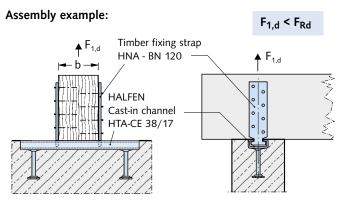
CURTAIN WALL

ROOF AND WALLS HALFEN HNA Timber Fixing Strap

Typical installation of timber beams using HNA nailing straps with HALFEN Cast-in channels embedded in concrete.

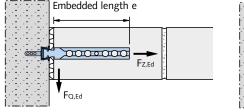

Type selection, timber fixing straps

To provide an optimal base for roof framework, continuous HALFEN HTA-CE Cast-in channels or HALFEN HTA-CE Cast-in channel short elements are cast in the concrete; suitable for concrete ring beams or slabs. The type of HALFEN HTA-CE Cast-in channels, nailing straps and nails depend on the assumed loads (ex. wind force).


For calculation and design criteria see:

- EN 1991-1-4 (EC1) and EN 1991-1-4/NA
- EN 1995-1-1 (EC5)

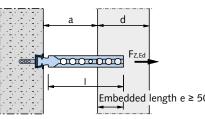
The timber fixing straps can be positioned on one or both sides of the timber beams or rafters. Refer to the following table for F_{Rd} load capacities. The beams/framework must be secured against twisting when straps are used only on one side of the beams, (example by nailing to the upper wood roof boarding).



Material/Finish FV = 1.0038, Suitable for hot-dip galvanized		Design value for load capacity F _{Rd} [kN] for each beam attachment			Attaching timber fixing straps to wooden beams/rafters		
HALFEN		Position of timber fixing straps					
Cast-in channel:	Item name: Length [mm]	Single-sided	Double	e-sided	Wire nails	Anchor nails	
	[]		for $b \ge 60 \text{mm}$	b ≥ 100 mm			
	HNA - N 95 - FV		4.2	4.9	5.6		
HTA-CE 28/15	HNA - N 120 - FV	4.2	4.9	0.0		according to the manufacturer's technical approval	
hot-dip galvanized (FV)	HNA - WN 120 - FV	1.4	2.8	2.8			
	HNA - WN 185 - FV						
	HNA - BN 95 - FV				according to EN 10230-1		
HTA-CE 38/17	HNA - BN 120 - FV	6.3	7.5	8.4			
hot-dip galvanized (FV)	HNA - BN 185 - FV						
	HNA - WN 120 - FV	1.4	2.9	2.0			
	HNA - WN 185 - FV	1.4	2.8	2.8			

ROOF AND WALLS Brick Tie Anchor Systems ML + BL

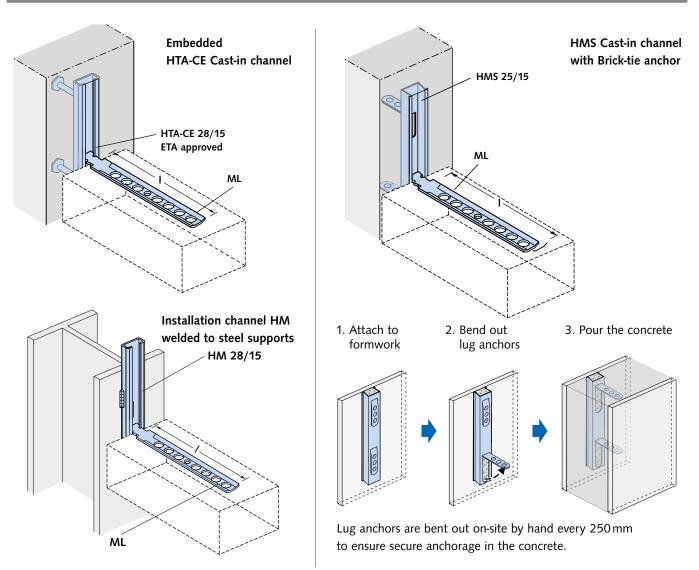
HALFEN ML and BL Brick tie anchors are tried and tested efficient installation systems for securing brick walls, masonry in-fills, partition walls, brick renders (with or without ventilation gap and heat insulation) to concrete


Plan view; wall attachment

walls, concrete supports, steel or wooden structures.

The brick tie anchors are able to move freely in the brick tie channels, considerably reducing cracks caused by masonry settlement.

Plan view; attachment of facing brickwork



All HTA-CE and HMS profiles have a foam filling to prevent concrete ingress. The channels are attached to the formwork using standard nails.

nent.The HALFEN Brick tie anchors are
inserted at the recommended intervals
(static requirements) in the brick wall
during construction (see page 62).
The anchors are inserted in the brick
tie channels, laid flat between the rows
of brick and pressed into the mortar.
The perforations in the anchors
optimise anchorage with the mortar.

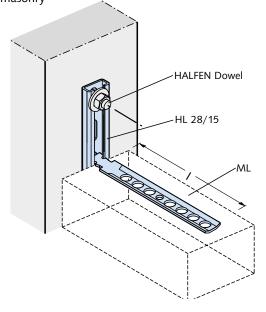
For spacing a - see HALFEN Technical Product Information façade, Brickwork Support

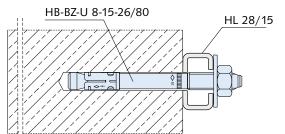
Brick tie anchor ML in combination with HALFEN Cast-in channels 25/15-D and 28/15

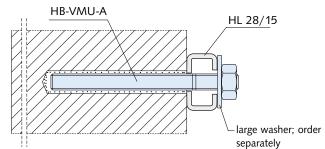
1

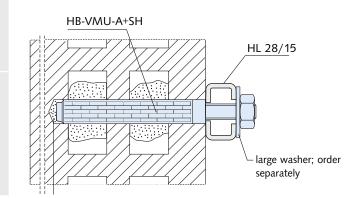
HZA CHANNELS

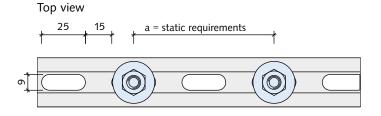
6


CURTAIN WALL


7


ACCESSORIES


ROOF AND WALLS Brick Tie Anchor System, ML + BL; HALFEN Anchor Bolt Systems


HL slotted framing channels anchored to concrete or masonry

ETA 17/0196 (brickwork) and ETA 16/0691 (concrete)/ Injection system HB-VMU plus

For more information on application and assembly see the Technical Product Information catalogue, **HALFEN HB Anchor bolt systems**

Bolt anchor HB-BZ-U 8-15-26/80

- > galvanized or (A4) stainless steel
- > approved for cracked and uncracked concrete
- > with large washer DIN 9021/EN ISO 7093

Anchor rod HB -VMU-A 8-20/110

- > galvanized or (A4) stainless steel
- > approved for monolithic masonry
- with large washer DIN 9021/EN ISO 7093 (order separately)
- mortar cartridge HB-VMU plus 280 and static mixer (order separately)

Anchor rod HB-VMU-A 8-20/110 with Perforated sleeve HB-VMU-SH 16×85

- > galvanized or (A4) stainless steel
- > approved for perforated brick masonry
- with large washer DIN 9021/EN ISO 7093 (order separately)
- mortar cartridge HB-VMU plus 280 and static mixer (order separately)

1

2

6

CURTAIN WALL

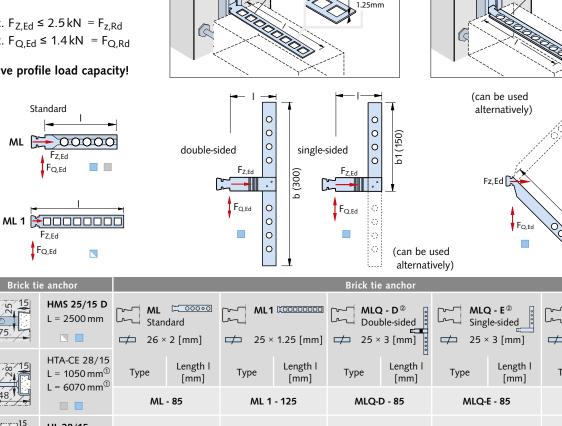
ROOF AND WALLS Brick Tie Anchor System, ML + BL

Brick tie anchors

ML, BL

- max. load F_{Z,Ed} = 0.32 kN per cm embedment length e
- max. $F_{Z,Ed} \le 3.2 \text{ kN} = F_{z,Rd}$
- max. $F_{Q,Ed} \le 2.7 \text{ kN} = F_{Q,Rd}$

ML 1

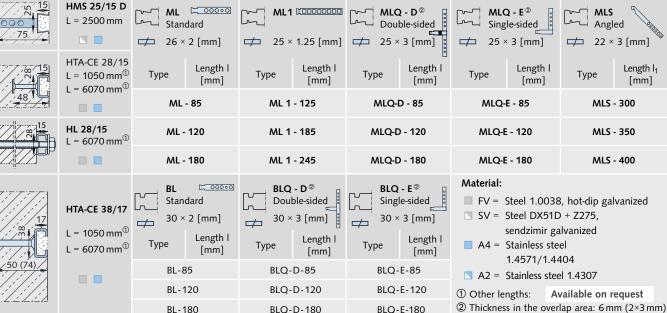

- max. $F_{Z,Ed} \le 2.5 \text{ kN} = F_{Z,Rd}$
- max. $F_{Q,Ed} \le 1.4 \text{ kN} = F_{Q,Rd}$

Observe profile load capacity!

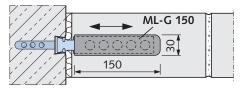
F_{Z,Ed}

F_{Q,Ed}

ML 🗄



Masonry connection


with ML 1

ML 1

HTA-CE 28/15

Debond sleeve ML-G 150 for wall attachments, suitable for ML-anchors

Permits movement in the longitudinal anchor direction, e.g. in long masonry bonds or partition walls adjoining concrete load bearing structures; prevents cracks forming.

ML-G 150, material: soft PVC, material thickness 1.5 mm

Masonry connection

angled

HTA-CE 38/17

with BL

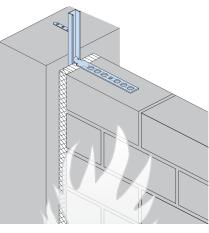
BL

1

3

6

ROOF AND WALLS


Firewall Connections with Wall Connecting System ML + BL

Firewall connection according to DIN 4102-4:2016-05

Solid masonry fire walls

Statically required connections of load bearing, room enclosing, masonry walls can also be designed as fire walls in accordance with DIN 4102-4 section 9.8.4 using HALFEN Brick tie channels.

The anchorage to adjacent components (steel reinforced concrete supports or walls) meet the requirements for stability and fire resistance if the anchorage conforms to the standards set in DIN 4102-4 section 9.8.4 (figure 9.13, variant 2).

Connection of a load bearing masonry wall as a fire wall according to DIN 4102-4 section 9.8.4 (figure 9.13) or according to EN 1996-1-2: 2011-04 (figure E.4B)

Definition, DIN regulations

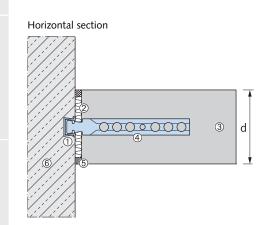
① HALFEN Cast-in channel

② Insulation layer:

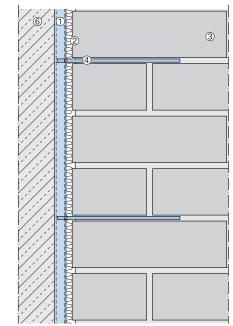
According to DIN 4102-4 section 9.2.14 insulation layers in connecting joint gaps must "[...] be made of non-flam mable mineral fibre; have a melting point \geq 1000°C as stated in DIN 4102-17; and have a gross density of \geq 30 kg/m³ and must not smoulder".

3 Masonry:

Bricks (gross density class) and minimum wall thickness according to EN 1996-1-2: 2011-04.


- ④ Masonry connection (vertically adjustable)
- **5** Expansion joint
- 6 Concrete

Product information


HALFEN Cast-in channel type ①	④ Brick tie ancho for standard mortar	r (see page 59ff.) for thin bed mortar
HMS 25/15 D	ML	ML 1
HTA 28/15	ML	ML 1
HTA 38/17	BL	-

Anchor spacings

HALFEN Brick tie anchors can be used at any position along the whole length of the brick tie channel. Generally the standard spacing between the anchors is 250 mm (4 anchors per metre).

Vertical section

62

HZA CHANNELS

3

HGB CHANNELS

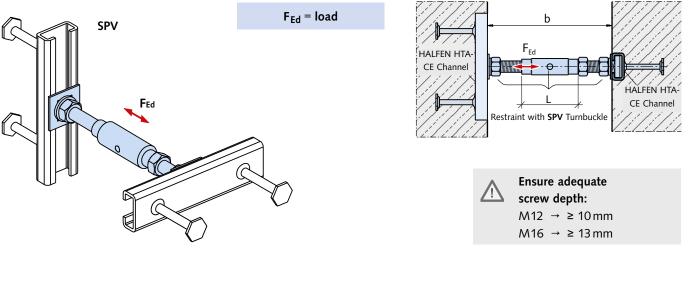
4

HTU CHANNELS

5

ROOF AND WALLS

6

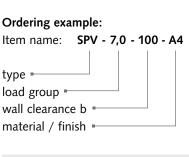

CURTAIN WALL

7

ACCESSORIES

ROOF AND WALLS

Restraint with Turnbuckle SPV


Product description

The restraint with turnbuckle SPV is suitable for compressive and tensile loads up to F_{Ed} = 14.0 kN and for clearances up to 200 mm. By turning the clamping sleeve (sleeve has a right and left-hand thread), the clearance can be freely adjusted within the given range. Connected to the building structure using HALFEN Cast-in channels (order separately).

Included in delivery

- Turnbuckle SPH
- 2 HALFEN Bolts
- (1 right-hand thread, 1 left-hand thread)
- 3 standard nuts
- 2 washers and 2 SIC locking washers

HALFEN Cast-in channels

must be ordered separately

HALFEN SPV Restraint with turnbuckle										
Load capacity F _{Rd} [kN]		±7.0		±9.8		± 14.0				
Туре	Stand-off distance	HALFEN Bolt left-hand thread	Sleeve	HALFEN Bolt right-hand thread	HALFEN Bolt left-hand thread	Sleeve	HALFEN Bolt right-hand thread	HALFEN Bolt left-hand thread	Sleeve	HALFEN Bolt right-hand thread
	b	M12	L	M12	M16	L	M16	M16	L	M16
	[mm] ②	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	100±10	50	60	40	50	60	40	-	-	-
	120±15	50	75	40	50	75	40	-	-	-
SPV	140±15	50	75	60	50	75	60	80	60	50
SPV	160±15	50	95	60	50	95	60	80	75	60
	180±15	50	115	60	50	115	60	80	95	60
	200±15	50	135	60	50	135	60	80	115	60
HALFEN Cast-in channel		HT	A-CE 38/1	7 ①	HT	A-CE 38/1	7 ①	HT	A-CE 49/3	0 ①

0 Short elements 150, 200 and 250 0 With F_{Rd} -load group 9.8 kN restricted to negative tolerance

For further concrete façades accessories see the **FB Concrete Façade catalogue**

1

HTA-CE CHANNELS

HGB CHANNELS

6

ROOF AND WALLS Restraint Tie HKZ

HZA CHANNELS

3

HGB CHANNELS

4

HTU CHANNELS

1

	F _{Ed} = load	HALFEN HTA-CE Cast-in channel
НКZ		F _{Ed}
F _{Ed}		
B	A HALFEN Channel suitable for HKZ-Restraint ties	(axial spacing) a ₁
	B HALFEN Channel or dowel according to approval	- I
Product characteristics		Ordering example:

Two HALFEN Cast-in channels

three-dimensional adjustability.

embedded at right angle in

the concrete ensure

Product characteristics

The serrations in the bracket and in the washer ensure positive static load transmission.

> Please order HALFEN Cast-in channels and HALFEN Bolts and washers separately

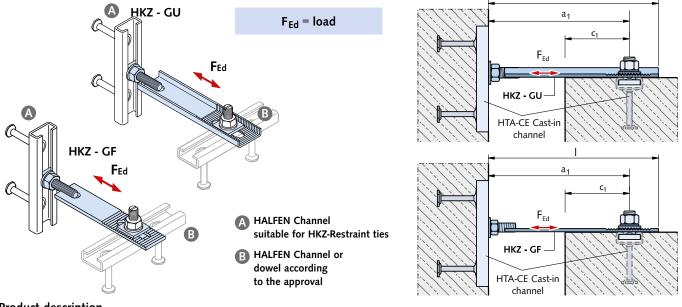
> > HKZ 38/17 - 300 - GV

HALFEN HKZ Restraint tie Characteristics: Type selection: Type selection: Dimensions A4 = Stainless steel grade GV = galvanized. ∩ Not suitable for façades with 1.4571/1.4404 Load ventilation gaps Spacing Holes Length Tolerance capacity Туре Type a₁ a₁ a1 F_{Rd} [kN] [mm] [mm] [mm] [mm] [mm] [mm] HKZ 28/15 - 50 - GV HKZ 28/15 - 50 - A4 90 50 11 11 × 55 75 HKZ 28/15 - 75 - GV HKZ 28/15 - 75 - A4 115 HKZ 28/15 - 100 - GV HKZ 28/15 - 100 - A4 140 100 HKZ 28/15 - 125 - A4 165 125 HKZ 28/15 - 125 - GV +4.9 a₁ HKZ 28/15 - 150 - GV HKZ 28/15 - 150 - A4 190 150 (tension only) $11 11 \times 55$ ±20 HKZ 28/15 - 175 - GV HKZ 28/15 - 175 - A4 215 175 RL 11 HKZ 28/15 - 200 - GV HKZ 28/15 - 200 - A4 240 200 HKZ 28/15 - 225 - GV HKZ 28/15 - 225 - A4 265 225 HKZ 28/15 - 250 - GV HKZ 28/15 - 250 - A4 290 250 HKZ 38/17 - 75 - GV HKZ 38/17 - 75 - A4 115 75 LL 13 × 55 HKZ 38/17 - 100 - GV HKZ 38/17 - 100 - A4 140 100 HKZ 38/17 - 125 - GV HKZ 38/17 - 125 - A4 165 125 HKZ 38/17 - 150 - GV HKZ 38/17 - 150 - A4 190 150 HKZ 38/17 - 175 - GV HKZ 38/17 - 175 - A4 215 175 +9.8 LL 13 × 55 (tension only) HKZ 38/17 - 200 - GV HKZ 38/17 - 200 - A4 240 200 ± 20 RL 13 HKZ 38/17 - 225 - GV HKZ 38/17 - 225 - A4 265 225 290 HKZ 38/17 - 250 - GV HKZ 38/17 - 250 - A4 250 HKZ 38/17 - 275 - GV HKZ 38/17 - 275 - A4 315 275

1) The load capacities apply for the HKZ-restraint ties. The channel 🔕 and the fixing dowel/channel 🕒 must be verified, depending on the edge distance c1, the concrete grade and the reinforcement, for each application.

340

300


HKZ 38/17 - 300 - A4

Item name: HKZ-38/17 - 100 - A4

type 🛛		
clearance a ₁ 💻		
material / finish		

ROOF AND WALLS

Restraint Tie HKZ - GF/GU

Product description

Characteristics:

1

Load capacity F_{Rd} [kN]

±4.9

±9.8

±16.8

The serrations in the bracket and in the washer ensure positive static load transmission.

Please order HALFEN Cast-in \bigcirc channels and HALFEN Bolts and washers separately.

HALFEN Restraint ties, type HKZ-GF and type HKZ-GU

Type selection:

The double-sided attachment using a HALFEN Bolt and a threaded plate ensures positive and slippage-free wind anchoring when used in combination with HALFEN HTA-CE Cast-in channels set in concrete; the connection is threedimensionally adjustable.

Type selection:

Ordering example:

Dim

Item name: HKZ - GF 38/17 - 125 - GV type 🛏 axial spacir material/ C

I

ng a ₁ ∎ GV/A4 ∎	
ensions:	
Tolerance	Slot
[mm]	[mm]
a ₁	11 × 55

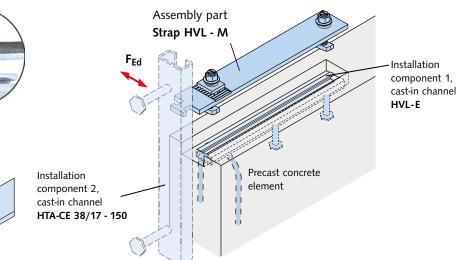
у	GV = galvanized not suitable for façades with ventilation gap Type a 1	A4 = Stainl 1.4571/′ Type		Length	Spacing a1	Tolerance	Slot
	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]
	HKZ - GF 28/15 - 75 - GV	HKZ - GF 28	8/15 - 75 - A4	115	75		11 × 55
	HKZ - GF 28/15 - 100 - GV	HKZ - GF 28	/15 - 100 - A4	140	100		
	HKZ - GF 28/15 - 125 - GV	HKZ - GF 28	/15 - 125 - A4	165	125	a ₁ ±20	
	HKZ - GF 28/15 - 150 - GV	HKZ - GF 28	/15 - 150 - A4	190	150	-20	
	HKZ - GF 28/15 - 175 - GV	HKZ - GF 28	/15 - 175 - A4	215	175		
	HKZ - GF 38/17 - 100 - GV	HKZ - GF 38	/17 - 100 - A4	140	100		13 × 55
	HKZ - GF 38/17 - 125 - GV	HKZ - GF 38	/17 - 125 - A4	165	125	a ₁ ±20	
	HKZ - GF 38/17 - 150 - GV	HKZ - GF 38	/17 - 150 - A4	190	150		
	HKZ - GF 38/17 - 175 - GV	HKZ - GF 38	/17 - 175 - A4	215	175		
	HKZ - GU 38/17 - 200 - GV	HKZ - GU 38	3/17 - 200 - A4	240	200		13 × 55
	HKZ - GU 38/17 - 225 - GV	HKZ - GU 38	3/17 - 225 - A4	265	225	a ₁ ±20	
	HKZ - GU 38/17 - 250 - GV	HKZ - GU 38	3/17 - 250 - A4	290	250	-20	
	HKZ - GU 50/30 - 200 - GV	HKZ - GU 50)/30 - 200 - A4	240	200		
	HKZ - GU 50/30 - 225 - GV	HKZ - GU 50)/30 - 225 - A4	265	225		17 × 60
	HKZ - GU 50/30 - 250 - GV	HKZ - GU 50)/30 - 250 - A4	290	250	a ₁	
	HKZ - GU 50/30 - 275 - GV	HKZ - GU 50)/30 - 275 - A4	315	275	±20	
	HKZ - GU 50/30 - 300 - GV	HKZ - GU 50)/30 - 300 - A4	340	300		
anac	ities apply for the HK7-restraint ties	The channel A an	d the fiving dowel	/channel 🚯 mu	st he verified der	pending on the e	dae distance c

1) The load capacities apply for the HKZ-restraint ties. The channel (A) and the fixing dowel/channel (B) must be verified, depending on the edge distance c1, the concrete grade and the reinforcement, for each application.

5

7

ROOF AND WALLS HVL Precast Connection


Assembly:

Pre-assembled

components

Assembly part HVL-M Pre-assembled, consisting of:

- serrated hammer-head strap
- serrated nammer-nead strap
- 1 serrated counter plate
- 2 bolt sets

Longitudinal section

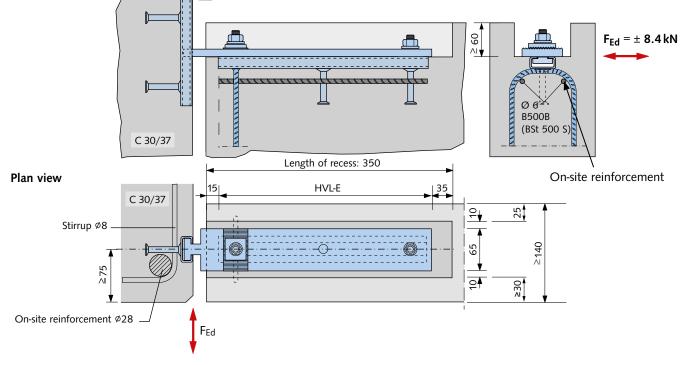
(Bolt HS 38/17 - M12 × 50 + washer + tapered compressed spring)

≥ 170

Installation component 1 HVL-E:

HALFEN Cast-in channel HTA 38/17-300-SK with 2 bolt anchors and one loop end anchor.

Installation component 2:

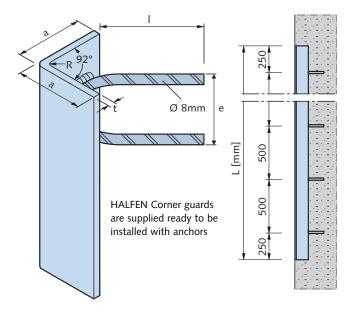

HALFEN Cast-in channel HTA-CE 38/17-150 with 2 bolt anchors.

Corrosion protection

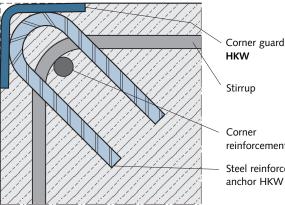
- hammer-head strap, cast-in channel: hot-dip galvanized
- HALFEN Bolts, nuts, washers and springs: galvanized

These parts are covered by mortar after installation.

Cross section



1


6

CURTAIN WALL

ROOF AND WALLS HALFEN HKW Corner Guard

Column edge, typical cross-section

HKW

Stirrup

Corner reinforcement

Steel reinforcement anchor HKW

Advantages:

- > 92° angle ensures a tight fit to the formwork. This prevents concrete seeping between the formwork and the corner profile, resulting in a smoother finish
- > U-shaped concrete reinforced anchors do not restrict the corner reinforcement and allow easy installation of the reinforcement
- > anchors are of reinforcement steel quality to guarantee optimal anchorage
- > competitive pricing through serial production

Corner guard HKW							
Type selection:	Materia	l/Finish:	Anchor dimensions	Radius			
Lanath	FV = hot-dip galvanized	A2 = Stainless steel					
Type a/t ^{Length} no. of L anchor [mm] [mm]			l×e [mm]	R [mm]			
HKW 50/5 - 500 / 2	FV	A2		6			
750 / 2	FV	A2	75 × 55				
1000 / 2	FV	A2					
1500 / 3	FV	A2					
2000 / 4	FV	A2					
HKW 80/6 - 500 / 2	FV	A2		8			
750 / 2	FV	A2	100 × 85				
1000 / 2	FV	A2					
1500 / 3	FV	A2					
2000 / 4	FV	A2					
HKW 100/8 - 500 / 2	FV	A2					
750 / 2	FV	A2					
1000 / 2	FV	A2	110 × 85	16			
1500 / 3	FV	A2					
2000 / 4	FV	A2					

Material/Finish:

- **FV** = **Corner profile:** Steel hot-dip galvanized 1.0038 Anchor: B500B (BSt 500 S)
- A2 = Corner profile: Stainless steel 1.4307 Anchor: B500B/A NR

Ordering example:

HKW 50/5 - A2 - 2000/4

1

CURTAIN WALL

HALFEN CURTAIN WALL SYSTEM The advantages at a glance

Modern buildings require façades of the highest quality that can be installed quickly and safely. This is the reason the HALFEN Curtain Wall System is chosen more and more frequently by architects and investors.

HCW-B2 Bracket

For modular façades. Anchored to the top surface of floor slabs.

Fast and cost-effective

- 3-dimensional adjustable connection when used with cast-in channels
- > uses bolts instead of welding
- > fast assembly reduces installation time

For post and beam façades. Anchored to the edges of slabs.

For post and beam façades. Anchored to the top surface of floor slabs.

5

4

HALFEN CURTAIN WALL SUPPORT SYSTEMS General

HALFEN Curtain wall system

This type of construction is characterized by an outer wall with a continual outer skin (see figure 1).

The façade is attached to the main structure of the building using only the required number of point-load connections.

Curtain wall façades protect the interior of buildings from external, unwanted environmental influences whilst still permitting visual contact with the outside environment with structural components that can be opened or are transparent. Specifically, this includes sufficient stability against wind loads, adequate insulation against frost in winter, heat in summer as well as against external noise.

In addition, various requirements must be met to protect against fire and other critical situations.

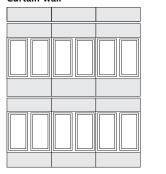
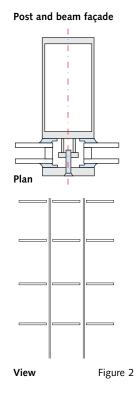


Figure 1 partial view of a façade

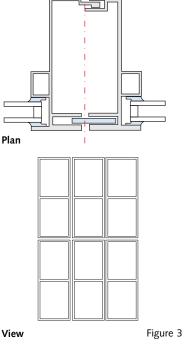
section

Post and beam façade and the modular façade

Basically, we distinguish between two methods of curtain wall façades:


> the post and beam façade

> and the **modular façade**.


Post and beam façade

One basic distinctive difference is the way expansion in the façade is distributed (for example; thermal expansion). With the post and beam façade (see figure 2) the vertical and horizontal frame supports are installed in spacings corresponding to the façade elements. The supports are installed with an expansion gap between components allowing for sufficient expansion.

The respective longitudinal and transverse connections have an expandable joint. The filler elements (glass or panel) installed in a post and beam structure permit movement within the tolerance of the designed expansion joint. The glass and filler elements are delivered separately and are then installed on site, requiring on-site scaffolding.

Modular façade

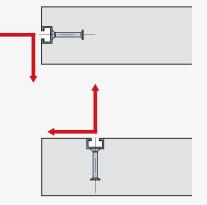
With the modular façade method (see figure 3), the façade is made of prefabricated elements, in which glass, natural stone or infills are pre-installed. The façade profiles are designed as a key and slot system to allow for expansion. This method provides immediate weather protection and allows the building contractor to start interior work on the respective floor directly after the prefabricated modules have been installed.

Scaffolding is not required with this method of construction.

1

3

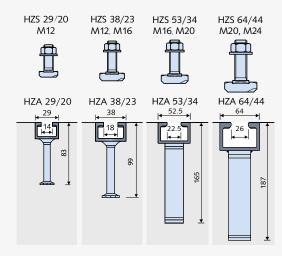
5

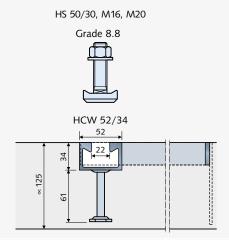

HALFEN CURTAIN WALL SUPPORT SYSTEMS Product range

Load conditions and required HALFEN Cast-in channels

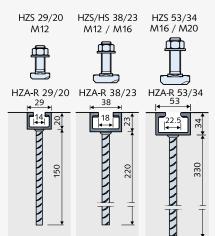
Standard slab thickness

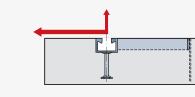
with standard tensile and transverse tensile loads


HALFEN Channels with bolt anchors and weld-on I-anchors


APP. NO. 2.2.4. 1991 APP. NO. 2.2.4. 1991 APP. NO. 2.2.4. 1991

see pages 14-15, 30


Hot-rolled serrated channels and bolts



HCW 52/34 and bolt

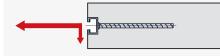
Hot-rolled serrated channels with rebar anchors and bolts

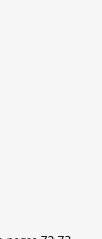
(not included in the HTA-CE approval)

see pages 72-73

Thin slabs (thickness ≥ 10 cm) with high tension loads HALFEN Channels HTA-R or HZA-R

Thin slabs (thickness \geq 12.5 cm)

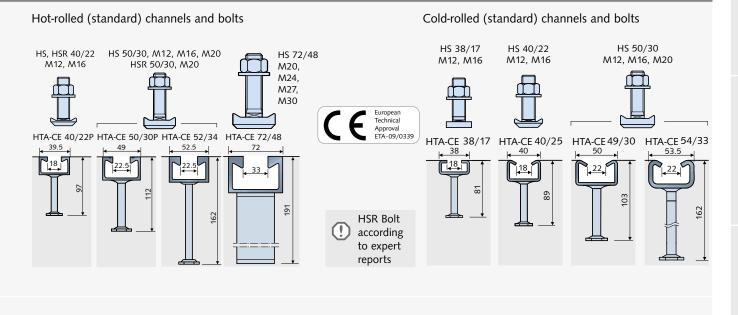

and small edge distance

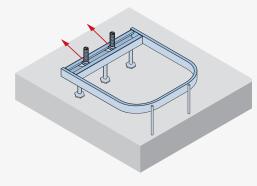

HCW 52/34

with high transverse tensile loads

HALFEN Curtain wall channel

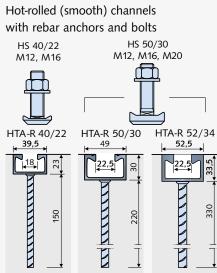
with rebar anchors (not included in the HTA-CE and HZA approvals)

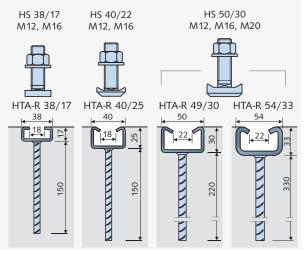

1


2

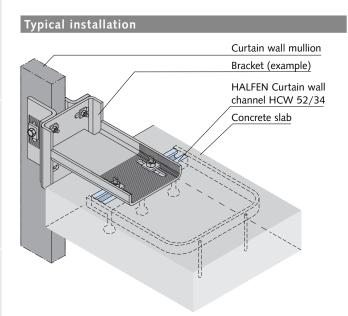
4

7

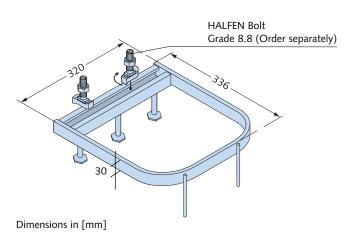

HALFEN CURTAIN WALL SUPPORT SYSTEMS Product Range



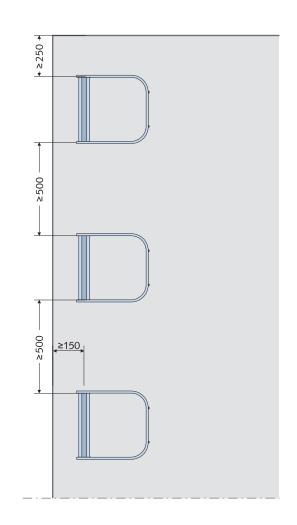
HCW 52/34 with bolts and bracket

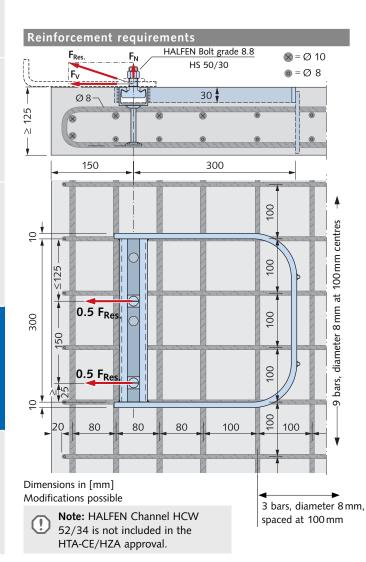


1


2

HALFEN CURTAIN WALL SUPPORT SYSTEMS HALFEN Channel HCW 52/34




Product description

Identification:HCW 52/34Material:hot-dip galvanized

Channel dimensions and edge spacing

6

HALFEN CURTAIN WALL SUPPORT SYSTEMS HALFEN Cast-in Channel HCW 52/34

Channel load data

The following load failure were averaged from three tests:

F _{V failure}			= 142.3 kN
F _{N failure}			= 47.4 kN
F _{res.failure}	=	$\sqrt{F_N^2 + F_V^2}$	= 150.0 kN

The load deformation diagram (see right) may be used to determine allowable loads based on acceptable displacement and the required safety factor according to local building codes. The diagram is based on the following:

- tensile and transverse loads were increased at a ratio of 1:3 up to breaking point
- concrete slab thickness \geq 125 mm and reinforcement as shown on page 72
- concrete strength class \geq C 20/25 N/mm²
- load is transferred into the channel via two HALFEN Bolts HS 50/30M20 Grade 8.8. The bolt spacing is 150 mm. A sample calculation is shown below

The safety factor is freely selected. However, it must be determined which factors are actually to be implemented, whether these are based on project specific boundary condition or on valid building regulations.

Calculation example: Assum (failure	ed safety factor e test load / wo		d)		
Average failure load from the Transverse tensile stress Tensile stress Res. diagonal tensile load	e tests: F _V ultimate F _N ultimate F _{res,ultimate}	= = =	47.4 kN		
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Allowable load with v = 3 ag perm. F_V = 142.3 / perm. F_N = 47.4 / perm. F_{res} = 150 / 3	3 = 47.4 kN 3 = 15.8 kN	ultimate I	oad from tests:		
Control: Working load F _V = 3 Working load F _N = 1 Working load F _{res} = -	0 kN < 15.8 kN	= 36.4	kN < 50 kN		
Displacement at working loa Actual safety factor for aver	•	0,			

Corresponding HALFEN Bolts HS 50/30

Depending on the load size, we also recommend using HALFEN Bolts HS 50/30 M16 or M20, grade 8.8 in combination with HALFEN Cast-in channel HCW 52/34. The bolts stated below are zinc galvanized with a special coating.

For interior use this design is considered equivalent to a hot-dip galvanized design. Other bolt sizes and materials can be supplied. Please contact us for detailed information. Addresses can be found at the back of this catalogue.

2

3

4

Load deformation diagram

Fres, ultimate = 150 kN

Load Fres.

[kN]

150

140

130 -

120

110 -

100 -

90

80-70-60 -50 -

40 36.4

> 30 20

10 0 4.12

11

۶

Type selection HALFEN Bolts HS 50/30 GV Grade 8.8									
Thread	Material grade	Available length L [mm]	Allowable resulting bolt load (all directions) perm. F _s [kN]	Allowable bending moment [Nm]	Recommended torque [Nm]	If the bolt is stressed in the direction of a slot its load capacity must be verified			
M 16	8.8	40, 60, 80, 100	36.1	111	60	taking bolt flexure into account.			
M 20	8.8	45, 60, 80, 100	56.4	216	120				

 $0.5 \; F_{res}$

5

Displacement r [mm] in load direction Fres

6

7

0.5 Free

1st indication of crack in

the concrete

1

6

HALFEN CURTAIN WALL SUPPORT SYSTEMS Application Examples

Fixing of a curtain wall system using HCW-B2 Brackets connected to HTA-CE Cast-in channels

Fixing of a post and beam façade using HCW-ED Brackets on HTA-CE Cast-in channels

Fixing of a modular façade using HCW-ED Brackets on HTA-CE Cast-in channels

Typical curtain wall fixing with HTA-CE Cast-in channels

Liberty Life, Johannesburg

Post office Tower, Bonn

Burj Chalifa, Dubai

Westin Libertador Hotel, Lima

Torre Espacio, Madrid

Sage Centre, Gateshead

Edificio Gas Natural, Barcelona

World Financial Center, Shanghai

1

HTA-CE CHANNELS

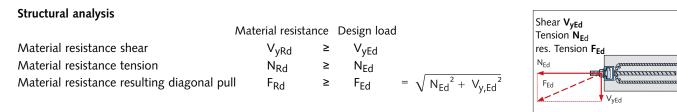
2

HZA CHANNELS

3

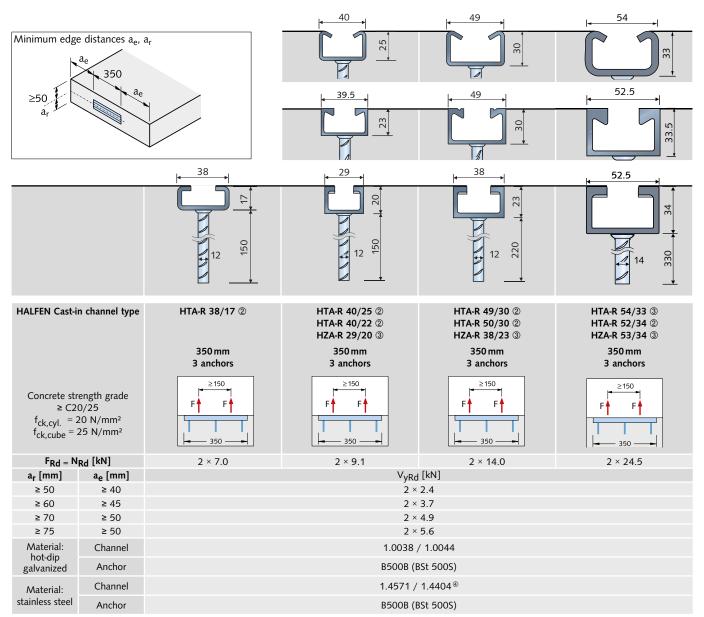
HGB CHANNELS

4


HTU CHANNELS

7

HALFEN CURTAIN WALL SUPPORT SYSTEMS


HALFEN Cast-in Channels with Rebar Anchor HTA-R and HZA-R

Design basics

HALFEN Channels HTA-R and HZA-R — Design values for material resistance

The minimum edge distance shown in the table applies to reinforced concrete

② Material 1.0038, ③ Material 1.0044, ④ Not available for HALFEN Cast-in channels HZA-R 29/20 Notes: HALFEN Cast-in channels HTA-R / HZA-R are not included in the HTA-CE/HZA approval

Other channel lengths from 150-6070 mm are available

1

3

HGB CHANNELS

4

HTU CHANNELS

5

ROOF AND WALL

6

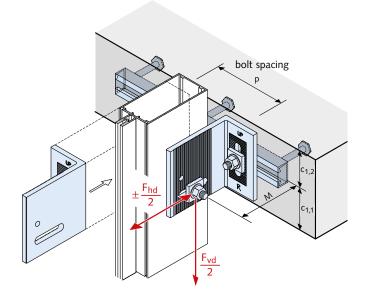
CURTAIN WALL

7

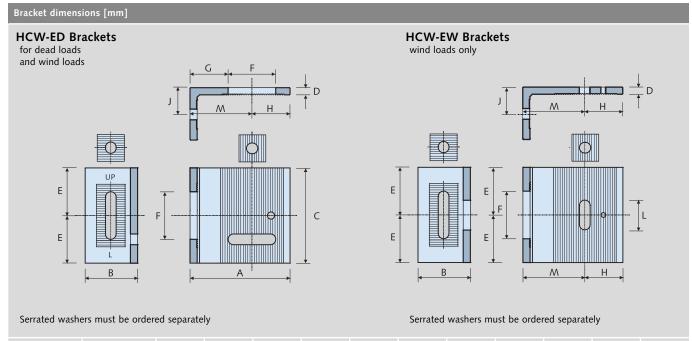
HALFEN CURTAIN WALL SUPPORT SYSTEMS

Edge of Slab Brackets HCW-ED Post and Beam Façades

Application example


HALFEN Edge of slab brackets are connected in pairs, one each side of the mullion, and are available in two types:

- > Type HCW-ED Brackets are designed to support both vertical and horizontal loads.
- > Type HCW-EW Brackets are designed to support only horizontal wind loads.

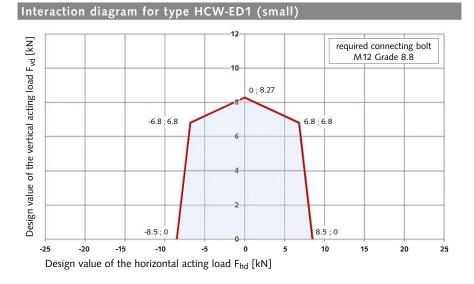

The brackets guarantee a simple adjustable connection. The HALFEN Bolts (connection: bracket to HALFEN Channel) and the standard hexagonal bolts M12 (connection: bracket to façade mullion) must be grade strength 8.8.

A round auxiliary hole in the long arm of the brackets can be used for temporary attachments. For example; temporary fixing of brackets to support the post with self-tapping screws until the final connection is made.

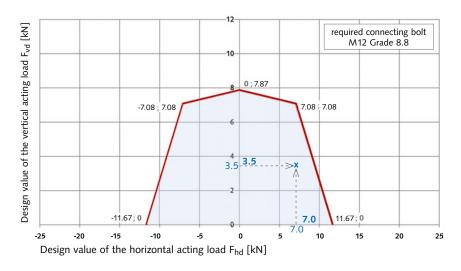
The brackets are made of high quality aluminium material. Special nylon discs are placed between the "Wind load" Bracket HCW-EW and support post.

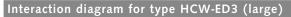
To guarantee correct installation, the HCW-ED brackets are marked `R' for right, `L' for left and `UP' for top.

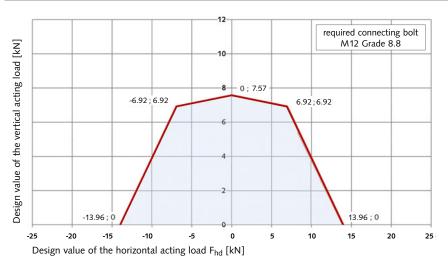
Size	Bracket code	А	В	С	D	E	F	G	Н	J	L	М
Small	HCW-ED 1 HCW-EW 1	108	70	114	10	57	64	25	51	36	40	57
Medium	HCW-ED 2	133	70	127	10	64	64	51	51	36	40	82
Large	HCW-ED 3 HCW-EW 3	159	70	140	10	70	64	76	51	36	40	108

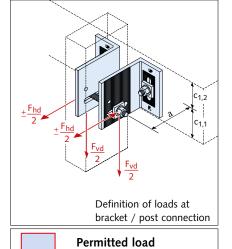

1

HTA-CE CHANNELS


2


HZA CHANNELS


HALFEN CURTAIN WALL SUPPORT SYSTEMS Dimensioning



Interaction diagram for type HCW-ED2 (medium)

Calculation basis

interaction area

6

2

HALFEN CURTAIN WALL SUPPORT SYSTEMS

Design Loads using two HCW-EW Brackets, Loads in the HALFEN Bolts (HCW-ED)

Design wind loads for type HCW-EW

Max. applied design load F _{hd} [kN]						
Size	Bracket code	max. F _{vd} [kN]	max. F _{hd} [kN]			
Small	HCW-EW 1	0	8.5			
Large	HCW-EW 3	0	13.96			
LCW EW Prackets are only suitable for wind leads						

HCW-EW Brackets are only suitable for wind loads.

Forces acting on the T-head bolts at the channel (HCW-ED)

The components of the design-reaction forces in the HALFEN Bolts at the connection of the curtain wall bracket to HALFEN Cast-in channel, are calculated by multiplying the design loads F_{vd} and F_{hd} at connection curtain wall bracket and façade support post with the factors s_x , s_y and s_z .

The factors are dependent on the bracket geometry, the load direction and the bolt position (see figure on the right). See table below for multiplication factors for determining the design reaction forces in the HALFEN Bolts.

		Dead load • (F _{vd} / 2)			Wind load (F _{hd} / 2)		Resulting load 45° S _i = (res. F _d / 2) × s _i		
Bracket	s _x	sy	sz	s _x	sy	sz	s _x	sy	sz
HCW-ED 1	0.5	3.2	-1.0	-1.0	1.0	0.0	-0.3	3.0	-0.7
HCW-ED 2	0.5	3.6	-1.0	-0.5	1.0	0.0	0.0	3.3	-0.7
HCW-ED 3	0.5	4.0	-1.0	-0.4	1.0	0.0	0.1	3.5	-0.7
Upper insta	Ilation p	osition of	HALFEN B	Bolt (Posit	ion 1)				
HCW-ED 1	0.6	1.3	-1.0	-1.0	3.6	0.0	-0.3	3.4	-0.7
HCW-ED 2	0.6	1.6	-1.0	-0.5	3.1	0.0	0.0	3.4	-0.7
HCW-ED 3	0.6	1.9	-1.0	-0.4	2.9	0.0	0.1	3.4	-0.7

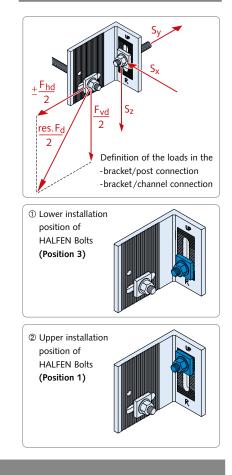
Calculation example

Assumed: slab thickness = 200 mm, width of	mullion = 80 mm,
projection a = 80mm (install. posit	tion see page 79)
design dead load	$F_{vd} = +3.5 kN$
design wind load (wind suction)	$F_{hd} = +7.0 kN$

Selected: HALFEN Bracket type HCW-ED 2

 \Rightarrow Interaction diagram type HCW-ED 2 (see page 77) proves that the assumed load is within the permitted load interaction zone

Determination of the design reaction forces in a HALFEN Bolt


① Lower installation position (Position 3)

$S_x = (3.5/2) \times 0.5 + (7/2) \times (-0.5) =$	-0.88 kN
$S_y = (3.5/2) \times 3.6 + (7/2) \times 1.0 =$	+9.80 kN
$S_z = (3.5/2) \times (-1.0) + 0 =$	-1.75 kN

\Rightarrow Resulting bolt load

res. $S_d = \sqrt{1}$	$(-0.88)^{2} + (9.80)^{2} + (-1.75)^{2} = 9.99 \text{ kN}$	per bolt
-----------------------	--	----------

Calculation basis

② Upper installation	position (Position 1)
----------------------	-----------------------

 $S_x = (3.5/2) \times 0.6 + (7/2) \times (-0.5) =$	-0.70 kN
$S_y = (3.5/2) \times 1.6 + (7/2) \times 3.1 =$	+13.65 kN
$S_z = (3.5/2) \times (-1.0) + 0 =$	−1.75 kN

 \Rightarrow Resulting bolt load

res.S_d = $\sqrt{(-0.70)^2 + (13.65)^2 + (-1.75)^2} = 13.78$ kN → each bolt → determining factor for bolt selection Selected HALFEN Channel:

HTA-R 50/30 - 350 - 3 Anchor - FV see page 75 with $V_{yRd} = 2 \times 5.6 \text{ kN} > 2 \times |S_z| = 2 \times 1.75$ ($a_r \ge 75 \text{ mm}$) $F_{Rd} = 2 \times 14.0 \text{ kN} > 2 \times \text{res. } S_d = 2 \times 13.78 \text{ kN}$

Check: bolt spacing: P =80+2 × 36 = 152 mm Selected HALFEN Channel: > 150 mm ✔

HS 50/30 - M12 × 60 GV 8.8

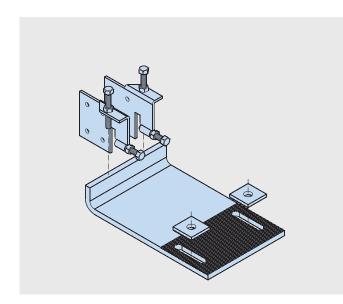
Requirement according to interaction diagram see page 77

l

1

3

HGB CHANNELS

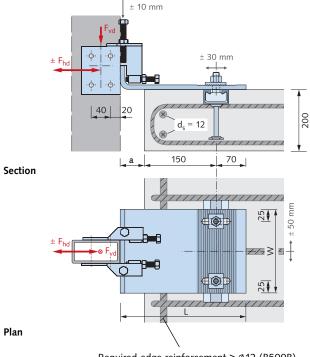

2

5

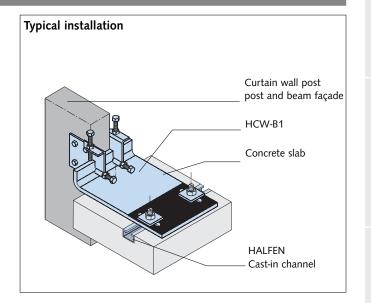
78

HALFEN CURTAIN WALL SUPPORT SYSTEMS Top of Slab Brackets HCW-B1

Support brackets for horizontal and vertical loads



HALFEN Brackets HCW-B1


HALFEN Brackets HCW-B1 for installing to the top of concrete slabs, are available in two load ranges and three cantilever sizes.

The brackets are made in grade S355 quality galvanized steel. Vertical adjustability is $\pm 10 \text{ mm}$.

Three-dimensional adjustability is ensured when used in combination with HALFEN HTA-CE Cast-in channels.

Required edge reinforcement $\geq \emptyset 12$ (B500B)

The lateral connecting plates are connected to the façade posts using M8 screws (not included). The façade planner is responsible for providing the static verification for the support posts. Use M16 HALFEN Bolts, grade 8.8 (order separately), to connect the base bracket to the HALFEN Castin channel. Depending on the façade type, the connection between the connecting plate and the base bracket can be designed either laterally adjustable or as a fixed point.

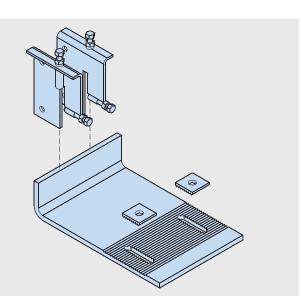
Dimensioning / Type selection

Design load	ranges	
Load range [kN]	dead load F_{vd} [kN]	wind load F_{hd} [kN] (wind suction + compression)
4/12	4	±12
7/20	7	±20

 $F_{vd},~F_{hd}:$ allowable design loads with a partial safety factor γ_F = 1.35 for dead load and γ_F = 1.5 for wind load.

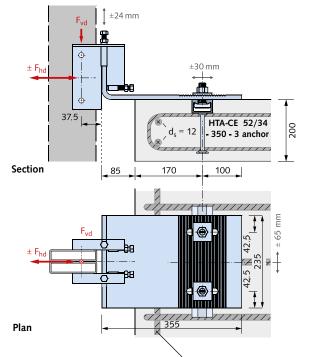
Type selection										
Load range	a	Item name	L	W	HALFEN	Recommended				
[kN]	[mm]	HCW-B1	[mm]	[mm]	Channel ①	HALFEN Bolt				
4/12	50	4/12-50	270	150	HTA-CE	HS 40/22				
	75	4/12-75	295	150	40/22P-250	M16×60				
	100	4/12-100	320	150	2 Anchors	8.8				
7/20	50	7/20-50	270	175	HTA-CE	HS 50/30				
	75	7/20-75	295	175	50/30P-300	M16×60				
	100	7/20-100	320	200	3 Anchors	8.8				

① Recommended HALFEN Channel exploiting full load capacity of bracket

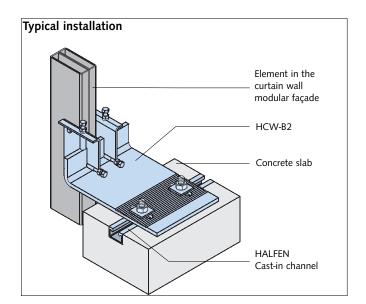

2

3

CURTAIN WALL

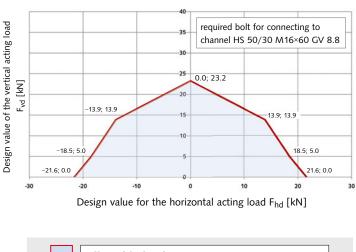

HALFEN CURTAIN WALL SUPPORT SYSTEMS Top of Slab Brackets HCW-B2

Brackets for horizontal and vertical loads



HALFEN Brackets HCW-B2

HALFEN Brackets HCW-B2 are made in grade S355 quality galvanized steel. The vertical adjustability is ± 24 mm. Three-dimensional adjustability is ensured when used in combination with HALFEN Cast-in channels HTA-CE. The lateral connecting plates are connected to the façade posts using M12 screws (not included in delivery).



Required edge reinforcement $\geq \emptyset 12$ (B500B)

The façade planner is responsible for providing the static verification for the support posts. Use M16 HALFEN Bolts, grade 8.8 (order separately), to connect the base bracket to the HALFEN Cast-in channel. Depending on the façade type, the connection between the connecting plate and the base bracket can be designed either laterally adjustable or as a fixed point.

Dimensioning

Allowable load interaction area

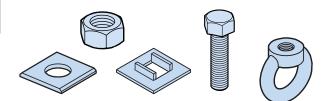
1

6

CURTAIN WALL

ACCESSORIES/FRAMING CHANNELS The advantages at a glance

To complement its product range HALFEN has a wide range of accessories. We can supply everything you need for your project; everything from one source.



HALFEN HM/HZM Framing channel, cold-rolled

HALFEN Framing channels, used in combination with matching HALFEN Bolts (or threaded plates) have all the benefits needed for versatile bolt and frame constructions.

Quick and economical

- > full flexibility in positioning and dimensioning of the bolt connection
- > quick installation and adjustability of plant equipment or building components
- > dirt and noise free on-site modifications
- > innovative modular assembly system; numerous complementary accessories available
- > no more welding in hazardous environments
- > bolted connections do not damage the corrosion protection of plant components

HALFEN HM/HZM Framing channel, hot-rolled

The HALFEN Framing channels range includes hot and cold-rolled channel profiles with standard or serrated channel lips.

HALFEN HL/HZL Slotted channels

HALFEN Framing channels are available, mill-finished, hot-dip galvanized or in stainless steel materials; slotted or non-slotted.

The complete, available product range for industrial application can be found in the technical product information catalogues; MT-FBC (Flexible Bolt connections) or MT-FFC (Flexible framing connections).

1

HTA-CE CHANNELS

2

HZA CHANNELS

3

HGB CHANNELS

Nuts, Washers

Accessories: Nuts, Washers

GV

galvanized FK 8

thread

M6

M8

M10

M12

M16

M20

M24

FV

hot-dip

galvanized

thread

M6

M8

M10

M12

M16

FV

hot-dip

galvanized

for bolt

M10

Α4

stainless steel

A4 thread

M6

M8

M10

M12

M16

M20

A2

stainless steel

A2 thread

M8

M10

M12

M16

A4

stainless steel

for bolt

M10

S/m

DIN

[mm]

10/5

13/6,5

17/8

19/10

24/13

30/16

36/19

S/m

DIN

[mm]

10/5

13/6.5

17/8

19/10

24/13

S/m

ISO

[mm]

10/5,2

13/6,8

16/ 8,4

18/10,8

24/14,8

30/18

36/21,5

S/m

ISO

[mm]

10/6

13/7.5

16/9.5

18/12

24/15.5

a × b × d

[mm]

 $40 \times 40 \times 5$

 $40 \times 40 \times 5$

40 × 40 × 5

 $37\times37\times5$

37 × 37 × 5

37 × 37 × 5

 $37 \times 37 \times 5$

 $50 \times 50 \times 6$

50 × 50 × 6

 $54 \times 54 \times 6$

54 × 54 × 6

54 × 54 × 6

54 × 54 × 6

 $40 \times 40 \times 6$

 $40 \times 40 \times 6$

40 × 40 × 6

HTA-CE CHANNELS

MU

Hexagonal nuts

] Ε

EN ISO 4032/

DIN 934

1

VUS

Square washers

for profile 40/25;

for profile 54/33,

for profile 52/34,

for profile 72/48,

6

6

VUS 40/25

HZA 41/22

VUS 49/30

VUS 52/34

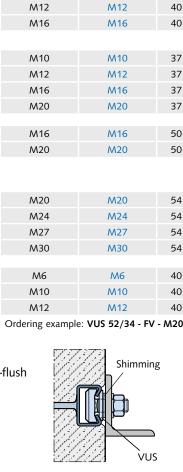
VUS 72/49

72/49

50/30

49/30

7


ACCESSORIES

VUS 41/41 for all 41 profiles

Application VUS: For shimming non-flush installations

US		GV	A4	D	d	s
Washer DIN 9021	DIN	galvanized for bolt	stainless steel for bolt	[mm]	[mm]	[mm]
EN ISO 7094/	440	M6	-	22	6.6	2
DIN 440	9021	M8	M8	24	8.4	2
	9021	M10	M10	30	10.5	2.5
	440	M12	-	45	13.5	4
~ ~	9021	M12	M12	37	13	3
	9021	M16	M16	50	17	3
d	440	M20	-	72	22	6
D		Ordering exar	nple: US - M12	- GV -DII	V 9021	

A4

GV

D d

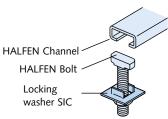
s

US Washers EN ISO 7089/ DIN 125

SIC

stainless steel for bolt	[mm]	[mm]	[mm]
M6	12	6.4	1.6
M8	16	8.4	1.6
M10	21	10.5	2
M12	24	13	2.5
M16	30	17	3
M20	37	21	3
	44	25	4
A2	D	d	s
stainless steel for bolt	[mm]	[mm]	[mm]
M8	17	8.4	1.6
M10	21	10.5	2
M12	24	13	2.5
M16	30	17	3
	for bolt M6 M8 M10 M12 M16 M20 - A2 stainless steel for bolt M8 M10 M12	for bolt [mm] M6 12 M8 16 M10 21 M12 24 M16 30 M20 37 - 44 A2 D stainless steel [mm] for bolt 17 M8 17 M10 21 M12 24	for bolt [mm] [mm] M6 12 6.4 M8 16 8.4 M10 21 10.5 M12 24 13 M16 30 17 M20 37 21 - 44 25 A2 D d stainless steel [mm] [mm] for bolt 17 8.4 M10 21 10.5 M8 17 8.4 M10 21 10.5 M12 24 13

Ordering example: US - M12 - GV - DIN 125


SIC Locking washer	GV	A4		able for EN Bolts
	galvanized	stainless steel	type	dimensions
	SIC-50/30-GV	SIC-50/30-A4	50/30	M16, M20
	SIC-40/22-GV	SIC-40/22-A4	38/17 40/22	M16
	SIC-38/23-GV	-	38/23	M16
	SIC-29/20-GV		29/20	M12
	SIC-38/17-GV	SIC-38/17-A4	38/17 40/22	M12, M10
	SIC-28/15-GV	SIC-28/15-A4	28/15	M8, M10
	SIC-20/12-GV	SIC-20/12-A4	20/12	M8

Ordering example: SIC - 38/17 - GV

Assembly scheme:

Application SIC:

For securing HALFEN Bolts; prevents bolts turning when tightening the nuts

Threaded Rods, Hex Bolts, Coupler Sleeves, Ring Nuts

Accessories: Threaded Rods, Hex Bolts, Coupler Sleeves, Ring Nuts

A4

stainless

steel

Length

F_{Rd}

S

DIN

[mm]

10

13

17

19

24

max. F_{Ed} perm.

2

[kN]

perm. F

S

EN ISO

[mm]

10

13

16

18

24

F

[kN]

G٧

galvanized

FK 4.6

GV 8.8

galvanized

FK 8.8

bolt size

M6 × 12

M6 × 25

M8 × 25

 $M8 \times 40$ M10 × 20 M10 × 30

M10 × 45

M10 × 60

M10 × 70

M12 × 22

M12 × 25

M12 × 30

M12 × 40

M12 × 50

M12 × 60

M12 × 80

M12 × 90

M16 × 40

M16 × 60

M16 × 90

A4

steel

1

2

3

stainless

FV

hot-dip

galvanized

type

1

2

3

G١	N	S

Threaded rods DIN 976-1

HSK

Hexagonal

head bolts

DIN 933

EN ISO 4017/

(without nut)

Hex bolts are used

HALFEN Threaded

plates

ΗJV

Adjustment

coupler

in combination with

			1	
thread	thread	[mm]	[kN]	[kN]
M6	M6	1000	3.1	2.2
M8	M8	1000	5.6	4.0
M10	M10	1000	9.0	6.4
M12	M12	1000	13.0	9.3
M16	M16	1000	24.2	17.3
M20	M20	1000	37.8	27.0
M24		1000	54.3	38.8
Ordering exar	mple: GWS - M	12 × 100	00 - GV	

A4

stainless

steel A4

bolt size

-

M8 × 25

 $M10 \times 30$

M10 × 45

M12 × 25

M12 × 30

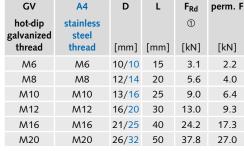
M12 × 40

M12 × 60

M12 × 80

M16 × 40

M16 × 60


M16 × 90

[mm] [mm] [mm]

t b

Coupler sleeves, round V

VBM

Ordering example: VBM - A4 - M16

SKM		

21/1/1	FV	1
Hexagonal coupler sleeves with view holes	hot-dip galvanized thread	stai st thi
with view holes	M10	N
	M12	N
	M16	N

A4

stainless steel

thread M12

× length L [mm]

M12 × 60

M12 × 75

M12 × 95

M12 × 115

M12 × 135

 $F_{Rd} = 7 kN$

perm. F = 5 kN

FV	A4	S	L	F _{Rd}	perm. F
hot-dip galvanized thread	stainless steel thread	[mm]	[mm]	① [kN]	[kN]
M10	M10	13	40	9.0	6.4
M12	M12	17	40	13.0	9.3
M16	M16	22	50	24.2	17.3
Ordering ex	ample: SKM	- FV - M	12		

A4

stainless steel

thread M16

× length L [mm]

M16 × 60

M16 × 75

M16 × 95

M16 × 115

M16 × 135

perm. F = 10 kN

 $F_{Rd} = 14 \text{ kN}$

Ordering example: SPH - A4 - M 12 × 75

D

for

M12

[mm]

16

16

16

16

16

D

for

M16

[mm]

22

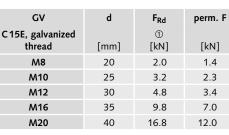
22

22

22

22

SPH	


Turnbuckle with rightand left-hand thread

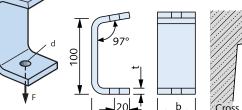
f = minimum screw depth: M12 ~ 10 mm

M16 = 13 mm

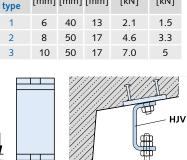
Ordering example: RM - GV - M12

① Recommended design value of the load capacity with a centric tensile stress

② Recommended design value of the load


3 HGB CHANNELS

1


HTA-CE CHANNELS

2

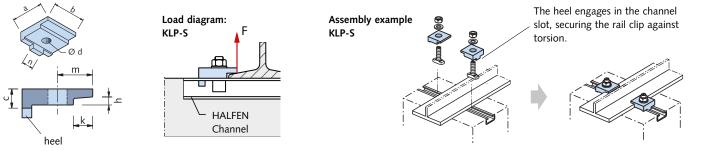
HZA CHANNELS

-50

section

d

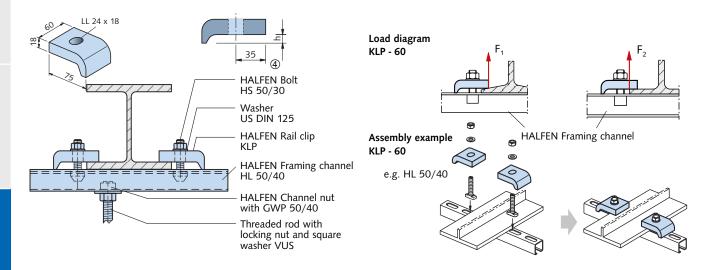
© 2019 HALFEN · B 20-E · www.halfen.com

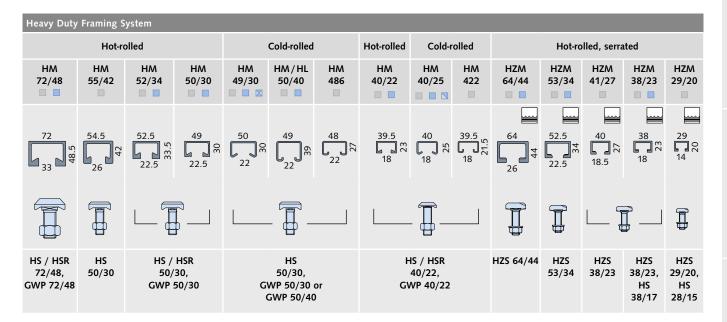

ACCESSORIES Rail Clips

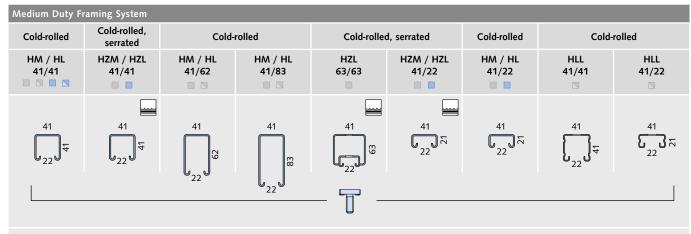
KLP-S Rail clips, steel 1.0038 forged

FV	Heel width	for					Allowable load		Preferred for use v	vith			
hot-dip galvanized	n n	HALFEN Bolts		Dimensions [mm]				at σ allowable = 125 N/mm²		other beam, flange thickness channels	channels		
Туре	[mm]	Ø × I [mm]	a	b	с	Ød	h	k	m	F [kN]		t [mm]	
No. 10	16	M16 × 60	44.0	45	12	18	5	12.0	22.0	3.5	80 - 140	4 - 6	S24
No. 26	without heel	M16 × 60	62.5	64	21	18	9	16.5	34.5	3.5	160-240	7-9	S24, A45, A55
No. 20	20	M20 × 65	52.0	55	19	□ 21	8	15.0	24.0	10.0	160-240	7-9	S24 - S49

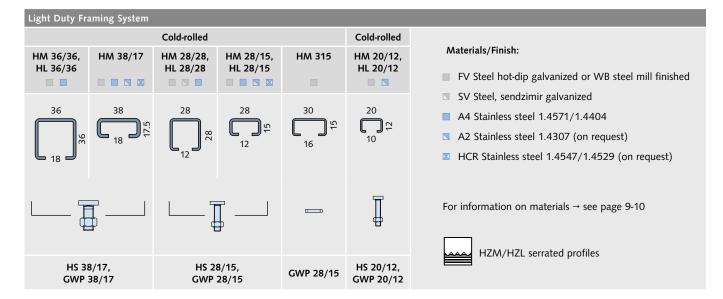
Ordering example: KLP - S - Nr. 26 - FV


 \Box = square opening


KLP - 60 Rail clips


FV Hot-dip	Clamping height	Allowable load [©]	Preferred for use with		
galvanized	h [mm]	[kN]	Standard profile I	Standard profile IPB	Crane and running ${\rm tracks}^{\circledast}$
60/10	10	$F_1 = 7.0$	120 - 160	100	A65, S33, S41
60/12	12	HALFEN Bolt	220-240	140	A100, S49, A75
60/14	14	M16 × 60, Grade 4.6	240-280	160 - 180	A120, S54
60/16	16	F ₂ = 11.25	300 - 340	200 - 220	S64
60/18	183	HÂLFEN Bolt	360 - 380	240-260	-
60/20	203	M16 × 60, Grade 8.8	400 - 450	280 - 300	

Take the load capacity of HALFEN Channels into account (Cantilever must be considered when selecting the HALFEN Channels and bolts)
 Bolt M16 × 80 necessary
 Check flange thickness of profile!
 Order example: KLP - 60/10 - FV



Framing Channels HM/HZM/HL/HZL — Type Overview

HZS/HS 41/41, HZS 41/22 GWP 41/41, GWP 41/22

1

HTA-CE CHANNELS

2

HZA CHANNELS

3

HGB CHANNELS

4

HTU CHANNELS

5

ROOF AND WALL

6

CURTAIN WALL

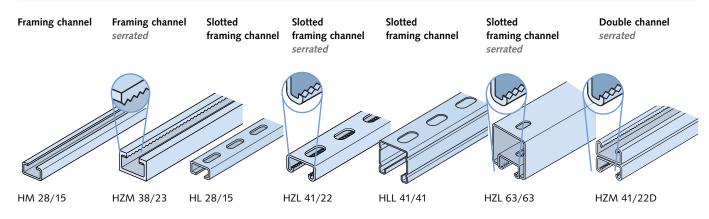
7

1

HTA-CE CHANNELS

2

HZA CHANNELS

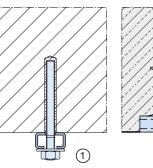

3

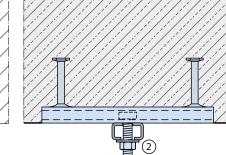
HGB CHANNELS

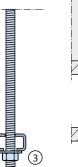
4

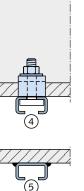
Framing Channels HM/HZM/HL/HZL – Application Examples

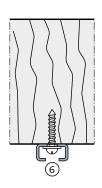
Type Overview




Application Examples


HALFEN Framing channels HM/HZM and slotted HALFEN Framing channels HL/HZL can be attached to a supporting structure using various methods:


- ① fastened to concrete or masonry with HB-VMU plus wedge anchors
- 2 bolted to HALFEN HTA-CE and HZA Cast-in channels
- ③ connected to threaded rods
- ④ clamped to steel profile supports
- ⑤ welded to steel components
- 6 screwed or nailed to wood structures


- HALFEN Framing channels are a part of the HALFEN Framing system:
- > installations for plant engineering
- > technical equipment in buildings
- > heavy and light installations

The HALFEN Framing system product range can be found in the following catalogues: HALFEN Flexible bolt connections, **HALFEN Flexible framing connections** HALFEN Powerclick System.

ROOF AND WALL

CURTAIN WALL

7

Index

Accessories	81-86
Adjustment coupler HJV	83
B L, BLQ brick tie anchor	59-63
Brick tie anchor ML, BL	59-62
Brick tie channel HMS	59, 61
C old-rolled channels HTA-CE	15
Cold-rolled channels HZA	30
Corner guard HKW	67
Corrosion protection Halfen Channels and bolts	9
Coupler sleeves VBM, SKM	83
Curved HALFEN Cast-in channels HTA-CS	24
Curved HALFEN Cast-in channels HZA	32
D owels	60
DYNAGRIP HALFEN Cast-in channels	28-37
Dynamic Loads for HALFEN Cast-in channels	37
E nd anchor ANK-E for Halfen HTA Channels	23
F irewall connection (masonry)	62
Framing channels HM, HZM, HL, HZL	85-86
Halfen Bolts	17-21
HALFEN Cast-in channels	5
HALFEN Cast-in channels; corner elements	24
Handrail connection systems HGB	38-51
HCW Curtain Wall System	68-80
Hexagonal coupler SKM	83
Hexagonal nuts - bolts	82-83
HGB Handrail connection systems	38-51
HKW Corner guard	67
HKZ Restraint tie, serrated	64-65
HL Framing channels, slotted	85-86
HM Framing channels	85-86
HMS Brick tie channels	59, 61
HNA Timber fixing straps	58
Hot-rolled channels HTA-CE	14
Hot-rolled channels HZA	30
HS Halfen Bolts	17-21
HSF Rafter shoe	57
HSR Halfen Bolts with nib	21
HTA-CE HALFEN Cast-in Channels	6-27
HTU Profiled metal sheets fixing channels	52-54
HVL Precast connection	66
HZA Halfen Cast-in channel DYNAGRIP	28-37
HZA Halfen Cast-in channel, serrated	28-37
HZI Framing channels slotted	85-86
HZA Halfen Cast-in channel, serrated	28-37
HZL Framing channels, slotted	85-86

HZM Framing channels, serrated HZS Halfen Bolts, serrated	85-86 31, 36
Locking washer SIC	82
M L, MLQ Brick tie anchor	59-62
Nuts MU	82
P recast connection HVL Profiled metal sheet fixing channel HTU Profiles HM, HL Profiles, serrated, HZM, HZL	66 52-54 85-86 85-86
R after shoe HSF Rail clips KLP Restraint tie HKZ Restraint tie, serrated HKZ Restraint with turnbuckle SPV Ring nuts RM	57 84 64-65 64-65 63 83
Serrated channels HZA (Anchoring systems) Serrated channels HZM, HZL (Industrial) Serrated profiles HZA Serrated profiles, bolts Short and cut lengths of Halfen Channels SIC Locking washer SKM Coupler sleeve Slotted framing channels HL, HZL SPH turnbuckle with right- and left-hand threads SPV Restraint with turnbuckle Square washers VUS Standard lengths for Halfen Channels HTA-CE Standard lengths for Halfen Channels HZA	58-37 85-86 28-37 30, 31 16, 32 83 85-86 83 63 82 16 32
T hreaded rods Tightening torques HALFEN Bolts Timber fixing Turnbuckle with right- and left-hand thread SPH	83 20–21 56–58 83
U S Washer	82
V BM Coupler sleeve VUS Washer	83 82
W asher US, VUS	82

CONTACT HALFEN WORLDWIDE

HALFEN is represented by subsidiaries in the following countries, please contact us!

Austria	HALFEN Gesellschaft m.b.H. Leonard-Bernstein-Str. 10 1220 Wien	Phone: +43-1-2596770 E-Mail: office@halfen.at Internet: www.halfen.at		
Belgium / Luxembourg	HALFEN N.V. Borkelstraat 131 2900 Schoten	Phone: +32-3-6580720 E-Mail: info@halfen.be Internet: www.halfen.be	Fax:	+32-3-658 15 33
China	HALFEN Construction Accessories Distribution Co.Ltd. Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing · P.R. China 100020	Phone: +86-1059073200 E-Mail: info@halfen.cn Internet: www.halfen.cn	Fax:	+86-1059073218
Czech Republic	HALFEN s.r.o. Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5	Phone: +420 - 311 - 690 060 E-Mail: info@halfen.cz Internet: www.halfen.cz	Fax:	+420-235-314308
France	HALFEN S.A.S. 18, rue Goubet 75019 Paris	Phone: +33-1-44523100 E-Mail: halfen@halfen.fr Internet: www.halfen.fr	Fax:	+33-1-44523152
Germany	HALFEN Vertriebsgesellschaft mbH Liebigstr. 14 40764 Langenfeld	Phone: +49-2173-970-0 E-Mail: info@halfen.de Internet: www.halfen.de	Fax:	+49-2173-970225
Italy	HALFEN S.r.l. Soc. Unipersonale Via F.lli Bronzetti N° 28 24124 Bergamo	Phone: +39-035-0760711 E-Mail: tecnico@halfen.it Internet: www.halfen.it	Fax:	+39-035-0760799
Netherlands	HALFEN b.v. Oostermaat 3 7623 CS Borne	Phone: +31-74-267 1449 E-Mail: info@halfen.nl Internet: www.halfen.nl	Fax:	+31-74-267 2659
Norway	HALFEN AS Postboks 2080 4095 Stavanger	Phone: +47-51823400 E-Mail: post@halfen.no Internet: www.halfen.no		
Poland	HALFEN Sp. z o.o. Ul. Obornicka 287 60-691 Poznan	Phone: +48-61-622 14 14 E-Mail: info@halfen.pl Internet: www.halfen.pl	Fax:	+48-61-622 14 15
Spain	HALFEN IBERICA, S.L. Polígono Industrial Santa Ana c/ Ignacio Zuloaga 20 28522 Rivas-Vaciamadrid	Phone: +34916321840 E-Mail: info@halfen.es Internet: www.halfen.es	Fax:	+34916334257
Sweden	Halfen AB Vädursgatan 5 412 50 Göteborg	Phone: +46-31-985800 E-Mail: info@halfen.se Internet: www.halfen.se	Fax:	+46-31-985801
Switzerland	HALFEN Swiss AG Hertistrasse 25 8304 Wallisellen	Phone: +41-44-8497878 E-Mail: info@halfen.ch Internet: www.halfen.ch	Fax:	+41-44-8497879
United Kingdom/ Ireland	HALFEN Ltd. A1/A2 Portland Close Houghton Regis LU5 5AW	Phone: +44 - 1582 - 47 03 00 E-Mail: info@halfen.co.uk Internet: www.halfen.co.uk	Fax:	+44-1582-470304
United States of America	HALFEN USA Inc. PO Box 18687 San Antonio TX 78218	Phone: +1800.423.9140 E-Mail: info@halfenusa.com Internet: www.halfenusa.com	Fax:	+1 877.683.4910
For countries not listed HALFEN International	HALFEN International GmbH Liebigstr. 14 40764 Langenfeld/Germany	Phone: +49-2173-970-0 E-Mail: info@halfen.com Internet: www.halfen.com	Fax:	+49 - 2173 - 970 - 849

HALFEN is represented with sales offices and distributors worldwide. Please contact us: www.halfen.com

NOTES REGARDING THIS CATALOGUE

Technical and design changes reserved. The information in this publication is based on state-of-the-art technology at the time of publication. We reserve the right to make technical and design changes at any time. HALFEN GmbH shall not accept liability for the accuracy of the information in this publication or for any printing errors.

The HALFEN GmbH subsidiaries in Germany, France, the Netherlands, Austria, Poland, Switzerland and the Czech Republic are Quality Management certified according to **ISO 9001:2015**, Certificate no. 202384-2016-AQ-GER-DAkkS.

- 010 - 11/19 -

ISO 9001